Atypical mechanism of conduction in potassium channels
Potassium channels can conduct passively K⁺ ions with rates of up to [almost equal to]10⁸ ions per second at physiological conditions, and they are selective to these species by a factor of 10⁴ over Na⁺ ions. Ion conduction has been proposed to involve transitions between 2 main states, with 2 or 3...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-09, Vol.106 (38), p.16074-16077 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Potassium channels can conduct passively K⁺ ions with rates of up to [almost equal to]10⁸ ions per second at physiological conditions, and they are selective to these species by a factor of 10⁴ over Na⁺ ions. Ion conduction has been proposed to involve transitions between 2 main states, with 2 or 3 K⁺ ions occupying the selectivity filter separated by an intervening water molecule. The largest free energy barrier of such a process was reported to be of the order of 2-3 kcal mol⁻¹. Here, we present an alternative mechanism for conduction of K⁺ in potassium channels where site vacancies are involved, and we propose that coexistence of several ion permeation mechanisms is energetically possible. Conduction can be described as a more anarchic phenomenon than previously characterized by the concerted translocations of K⁺-water-K⁺. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0903226106 |