FERM domain autoregulates Drosophila myosin 7a activity

Full-length Drosophila myosin 7a (myosin 7a-FL) has a complex tail containing a short predicted coiled coil followed by a MyTH4-FERM domain, an SH3 domain, and a C-terminal MyTH4-FERM domain. Myosin 7a-FL expressed in Sf9 cells is monomeric despite the predicted coiled coil. We showed previously tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-03, Vol.106 (11), p.4189-4194
Hauptverfasser: Yang, Yi, Baboolal, Thomas G, Siththanandan, Verl, Chen, Michael, Walker, Matthew L, Knight, Peter J, Peckham, Michelle, Sellers, James R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Full-length Drosophila myosin 7a (myosin 7a-FL) has a complex tail containing a short predicted coiled coil followed by a MyTH4-FERM domain, an SH3 domain, and a C-terminal MyTH4-FERM domain. Myosin 7a-FL expressed in Sf9 cells is monomeric despite the predicted coiled coil. We showed previously that Subfragment-1 (S1) from this myosin has MgATPase of Vmax [almost equal to] 1s⁻¹ and KATPase [almost equal to] 1 μM actin. We find that myosin 7a-FL has Vmax similar to S1 but KATPase [almost equal to] 30 μM. Thus, at low actin concentrations (5 μM), the MgATPase of S1 is fully activated, whereas that of myosin 7a-FL is low, suggesting that the tail regulates activity. Electron microscopy of myosin 7a-FL with ATP shows the tail is tightly bent back against the motor domain. Myosin 7a-FL extends at either high ionic strength or without ATP, revealing the motor domain, lever, and tail. A series of C-terminal truncations show that deletion of 99 aa (the MyTH7 subdomain of the C-terminal FERM domain) is sufficient to abolish bending, and the KATPase is then similar to S1. This region is highly conserved in myosin 7a. We found that a double mutation in it, R2140A-K2143A, abolishes bending and reduces KATPase to S1 levels. In addition, the expressed C-terminal FERM domain binds actin with Kd [almost equal to] 30 μM regardless of ATP, similar to the KATPase value for myosin 7a-FL. We propose that at low cellular actin concentrations, myosin 7a-FL is bent and inactive, but at high actin concentrations, it is unfolded and active because the C-terminal FERM domain binds to actin.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0808682106