Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors
In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simula...
Gespeichert in:
Veröffentlicht in: | The review of economics and statistics 2007-11, Vol.89 (4), p.784-789 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 789 |
---|---|
container_issue | 4 |
container_start_page | 784 |
container_title | The review of economics and statistics |
container_volume | 89 |
creator | Hall, Peter Li, Qi Racine, Jeffrey S. |
description | In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simulations reveal that this "automatic dimensionality reduction" feature is very effective in finite-sample settings. |
doi_str_mv | 10.1162/rest.89.4.784 |
format | Article |
fullrecord | <record><control><sourceid>jstor_mit_j</sourceid><recordid>TN_cdi_jstor_primary_40043100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40043100</jstor_id><sourcerecordid>40043100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-ab76c659179f23c50641f89b35a8effb96fe1ba0ea2bbf146d9c6b16b7a8f64b3</originalsourceid><addsrcrecordid>eNp1kc9LwzAUx4MoOKdHj0Lx5qE1r_nR5jiG08FQET14CklNtGNratIN9K83pSqCegp5-bzPS75B6BhwBsDzc29Cl5Uio1lR0h00AkZwKoDmu2iEMaEpZ4Tto4MQlhhjKICM0OO1a1rl1dp0vq6Si9DVa9XVrkmcTe7Mc3SGfjfbNFVfDkndJN2LSW7jiWkq03Nz783KbFXTfbU4Hw7RnlWrYI4-1zF6mF3cT6_Sxc3lfDpZpBXDvEuVLnjFmYBC2Jz0NQq2FJowVRprteDWgFbYqFxrC5Q_iYpr4LpQpeVUkzE6Hbytd6-bGIFcuo1v4kgJgvKSRXeE0gGqvAvBGytbHx_q3yRg2Ycn-_BkKSSVMbzInw38uv7p-4ed_MH2zLYUNZUEU2BM5jiH2C6xkO91-8txMjiWoXP--3IUY0og_t0HXdORKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194685591</pqid></control><display><type>article</type><title>Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors</title><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>MIT Press Journals</source><creator>Hall, Peter ; Li, Qi ; Racine, Jeffrey S.</creator><creatorcontrib>Hall, Peter ; Li, Qi ; Racine, Jeffrey S.</creatorcontrib><description>In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simulations reveal that this "automatic dimensionality reduction" feature is very effective in finite-sample settings.</description><identifier>ISSN: 0034-6535</identifier><identifier>EISSN: 1530-9142</identifier><identifier>DOI: 10.1162/rest.89.4.784</identifier><identifier>CODEN: RECSA9</identifier><language>eng</language><publisher>Cambridge: MIT Press</publisher><subject>Economic theory ; Kernel functions ; Markovs inequality ; Nonparametric models ; Parametric models ; Regression analysis ; Signal bandwidth</subject><ispartof>The review of economics and statistics, 2007-11, Vol.89 (4), p.784-789</ispartof><rights>Copyright 2007 the President and Fellows of Harvard College and the Massachusetts Institute of Technology</rights><rights>Copyright MIT Press Journals Nov 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-ab76c659179f23c50641f89b35a8effb96fe1ba0ea2bbf146d9c6b16b7a8f64b3</citedby><cites>FETCH-LOGICAL-c506t-ab76c659179f23c50641f89b35a8effb96fe1ba0ea2bbf146d9c6b16b7a8f64b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40043100$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40043100$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,53990,53991,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Hall, Peter</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Racine, Jeffrey S.</creatorcontrib><title>Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors</title><title>The review of economics and statistics</title><description>In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simulations reveal that this "automatic dimensionality reduction" feature is very effective in finite-sample settings.</description><subject>Economic theory</subject><subject>Kernel functions</subject><subject>Markovs inequality</subject><subject>Nonparametric models</subject><subject>Parametric models</subject><subject>Regression analysis</subject><subject>Signal bandwidth</subject><issn>0034-6535</issn><issn>1530-9142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kc9LwzAUx4MoOKdHj0Lx5qE1r_nR5jiG08FQET14CklNtGNratIN9K83pSqCegp5-bzPS75B6BhwBsDzc29Cl5Uio1lR0h00AkZwKoDmu2iEMaEpZ4Tto4MQlhhjKICM0OO1a1rl1dp0vq6Si9DVa9XVrkmcTe7Mc3SGfjfbNFVfDkndJN2LSW7jiWkq03Nz783KbFXTfbU4Hw7RnlWrYI4-1zF6mF3cT6_Sxc3lfDpZpBXDvEuVLnjFmYBC2Jz0NQq2FJowVRprteDWgFbYqFxrC5Q_iYpr4LpQpeVUkzE6Hbytd6-bGIFcuo1v4kgJgvKSRXeE0gGqvAvBGytbHx_q3yRg2Ycn-_BkKSSVMbzInw38uv7p-4ed_MH2zLYUNZUEU2BM5jiH2C6xkO91-8txMjiWoXP--3IUY0og_t0HXdORKQ</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Hall, Peter</creator><creator>Li, Qi</creator><creator>Racine, Jeffrey S.</creator><general>MIT Press</general><general>The MIT Press</general><general>MIT Press Journals, The</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20071101</creationdate><title>Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors</title><author>Hall, Peter ; Li, Qi ; Racine, Jeffrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-ab76c659179f23c50641f89b35a8effb96fe1ba0ea2bbf146d9c6b16b7a8f64b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Economic theory</topic><topic>Kernel functions</topic><topic>Markovs inequality</topic><topic>Nonparametric models</topic><topic>Parametric models</topic><topic>Regression analysis</topic><topic>Signal bandwidth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Peter</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Racine, Jeffrey S.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The review of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Peter</au><au>Li, Qi</au><au>Racine, Jeffrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors</atitle><jtitle>The review of economics and statistics</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>89</volume><issue>4</issue><spage>784</spage><epage>789</epage><pages>784-789</pages><issn>0034-6535</issn><eissn>1530-9142</eissn><coden>RECSA9</coden><abstract>In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simulations reveal that this "automatic dimensionality reduction" feature is very effective in finite-sample settings.</abstract><cop>Cambridge</cop><pub>MIT Press</pub><doi>10.1162/rest.89.4.784</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6535 |
ispartof | The review of economics and statistics, 2007-11, Vol.89 (4), p.784-789 |
issn | 0034-6535 1530-9142 |
language | eng |
recordid | cdi_jstor_primary_40043100 |
source | Business Source Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy; MIT Press Journals |
subjects | Economic theory Kernel functions Markovs inequality Nonparametric models Parametric models Regression analysis Signal bandwidth |
title | Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20Estimation%20of%20Regression%20Functions%20in%20the%20Presence%20of%20Irrelevant%20Regressors&rft.jtitle=The%20review%20of%20economics%20and%20statistics&rft.au=Hall,%20Peter&rft.date=2007-11-01&rft.volume=89&rft.issue=4&rft.spage=784&rft.epage=789&rft.pages=784-789&rft.issn=0034-6535&rft.eissn=1530-9142&rft.coden=RECSA9&rft_id=info:doi/10.1162/rest.89.4.784&rft_dat=%3Cjstor_mit_j%3E40043100%3C/jstor_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194685591&rft_id=info:pmid/&rft_jstor_id=40043100&rfr_iscdi=true |