Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors

In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of economics and statistics 2007-11, Vol.89 (4), p.784-789
Hauptverfasser: Hall, Peter, Li, Qi, Racine, Jeffrey S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 789
container_issue 4
container_start_page 784
container_title The review of economics and statistics
container_volume 89
creator Hall, Peter
Li, Qi
Racine, Jeffrey S.
description In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simulations reveal that this "automatic dimensionality reduction" feature is very effective in finite-sample settings.
doi_str_mv 10.1162/rest.89.4.784
format Article
fullrecord <record><control><sourceid>jstor_mit_j</sourceid><recordid>TN_cdi_jstor_primary_40043100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40043100</jstor_id><sourcerecordid>40043100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-ab76c659179f23c50641f89b35a8effb96fe1ba0ea2bbf146d9c6b16b7a8f64b3</originalsourceid><addsrcrecordid>eNp1kc9LwzAUx4MoOKdHj0Lx5qE1r_nR5jiG08FQET14CklNtGNratIN9K83pSqCegp5-bzPS75B6BhwBsDzc29Cl5Uio1lR0h00AkZwKoDmu2iEMaEpZ4Tto4MQlhhjKICM0OO1a1rl1dp0vq6Si9DVa9XVrkmcTe7Mc3SGfjfbNFVfDkndJN2LSW7jiWkq03Nz783KbFXTfbU4Hw7RnlWrYI4-1zF6mF3cT6_Sxc3lfDpZpBXDvEuVLnjFmYBC2Jz0NQq2FJowVRprteDWgFbYqFxrC5Q_iYpr4LpQpeVUkzE6Hbytd6-bGIFcuo1v4kgJgvKSRXeE0gGqvAvBGytbHx_q3yRg2Ycn-_BkKSSVMbzInw38uv7p-4ed_MH2zLYUNZUEU2BM5jiH2C6xkO91-8txMjiWoXP--3IUY0og_t0HXdORKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194685591</pqid></control><display><type>article</type><title>Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors</title><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>MIT Press Journals</source><creator>Hall, Peter ; Li, Qi ; Racine, Jeffrey S.</creator><creatorcontrib>Hall, Peter ; Li, Qi ; Racine, Jeffrey S.</creatorcontrib><description>In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simulations reveal that this "automatic dimensionality reduction" feature is very effective in finite-sample settings.</description><identifier>ISSN: 0034-6535</identifier><identifier>EISSN: 1530-9142</identifier><identifier>DOI: 10.1162/rest.89.4.784</identifier><identifier>CODEN: RECSA9</identifier><language>eng</language><publisher>Cambridge: MIT Press</publisher><subject>Economic theory ; Kernel functions ; Markovs inequality ; Nonparametric models ; Parametric models ; Regression analysis ; Signal bandwidth</subject><ispartof>The review of economics and statistics, 2007-11, Vol.89 (4), p.784-789</ispartof><rights>Copyright 2007 the President and Fellows of Harvard College and the Massachusetts Institute of Technology</rights><rights>Copyright MIT Press Journals Nov 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-ab76c659179f23c50641f89b35a8effb96fe1ba0ea2bbf146d9c6b16b7a8f64b3</citedby><cites>FETCH-LOGICAL-c506t-ab76c659179f23c50641f89b35a8effb96fe1ba0ea2bbf146d9c6b16b7a8f64b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40043100$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40043100$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,53990,53991,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Hall, Peter</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Racine, Jeffrey S.</creatorcontrib><title>Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors</title><title>The review of economics and statistics</title><description>In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simulations reveal that this "automatic dimensionality reduction" feature is very effective in finite-sample settings.</description><subject>Economic theory</subject><subject>Kernel functions</subject><subject>Markovs inequality</subject><subject>Nonparametric models</subject><subject>Parametric models</subject><subject>Regression analysis</subject><subject>Signal bandwidth</subject><issn>0034-6535</issn><issn>1530-9142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kc9LwzAUx4MoOKdHj0Lx5qE1r_nR5jiG08FQET14CklNtGNratIN9K83pSqCegp5-bzPS75B6BhwBsDzc29Cl5Uio1lR0h00AkZwKoDmu2iEMaEpZ4Tto4MQlhhjKICM0OO1a1rl1dp0vq6Si9DVa9XVrkmcTe7Mc3SGfjfbNFVfDkndJN2LSW7jiWkq03Nz783KbFXTfbU4Hw7RnlWrYI4-1zF6mF3cT6_Sxc3lfDpZpBXDvEuVLnjFmYBC2Jz0NQq2FJowVRprteDWgFbYqFxrC5Q_iYpr4LpQpeVUkzE6Hbytd6-bGIFcuo1v4kgJgvKSRXeE0gGqvAvBGytbHx_q3yRg2Ycn-_BkKSSVMbzInw38uv7p-4ed_MH2zLYUNZUEU2BM5jiH2C6xkO91-8txMjiWoXP--3IUY0og_t0HXdORKQ</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Hall, Peter</creator><creator>Li, Qi</creator><creator>Racine, Jeffrey S.</creator><general>MIT Press</general><general>The MIT Press</general><general>MIT Press Journals, The</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20071101</creationdate><title>Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors</title><author>Hall, Peter ; Li, Qi ; Racine, Jeffrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-ab76c659179f23c50641f89b35a8effb96fe1ba0ea2bbf146d9c6b16b7a8f64b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Economic theory</topic><topic>Kernel functions</topic><topic>Markovs inequality</topic><topic>Nonparametric models</topic><topic>Parametric models</topic><topic>Regression analysis</topic><topic>Signal bandwidth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Peter</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Racine, Jeffrey S.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The review of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Peter</au><au>Li, Qi</au><au>Racine, Jeffrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors</atitle><jtitle>The review of economics and statistics</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>89</volume><issue>4</issue><spage>784</spage><epage>789</epage><pages>784-789</pages><issn>0034-6535</issn><eissn>1530-9142</eissn><coden>RECSA9</coden><abstract>In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simulations reveal that this "automatic dimensionality reduction" feature is very effective in finite-sample settings.</abstract><cop>Cambridge</cop><pub>MIT Press</pub><doi>10.1162/rest.89.4.784</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6535
ispartof The review of economics and statistics, 2007-11, Vol.89 (4), p.784-789
issn 0034-6535
1530-9142
language eng
recordid cdi_jstor_primary_40043100
source Business Source Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy; MIT Press Journals
subjects Economic theory
Kernel functions
Markovs inequality
Nonparametric models
Parametric models
Regression analysis
Signal bandwidth
title Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20Estimation%20of%20Regression%20Functions%20in%20the%20Presence%20of%20Irrelevant%20Regressors&rft.jtitle=The%20review%20of%20economics%20and%20statistics&rft.au=Hall,%20Peter&rft.date=2007-11-01&rft.volume=89&rft.issue=4&rft.spage=784&rft.epage=789&rft.pages=784-789&rft.issn=0034-6535&rft.eissn=1530-9142&rft.coden=RECSA9&rft_id=info:doi/10.1162/rest.89.4.784&rft_dat=%3Cjstor_mit_j%3E40043100%3C/jstor_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194685591&rft_id=info:pmid/&rft_jstor_id=40043100&rfr_iscdi=true