Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors
In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simula...
Gespeichert in:
Veröffentlicht in: | The review of economics and statistics 2007-11, Vol.89 (4), p.784-789 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider a nonparametric regression model that admits a mix of continuous and discrete regressors, some of which may in fact be redundant (that is, irrelevant). We show that, asymptotically, a data-driven least squares cross-validation method can remove irrelevant regressors. Simulations reveal that this "automatic dimensionality reduction" feature is very effective in finite-sample settings. |
---|---|
ISSN: | 0034-6535 1530-9142 |
DOI: | 10.1162/rest.89.4.784 |