The Timing of Synaptic Vesicle Endocytosis
Alternative models to describe the endocytosis phase of synaptic vesicle recycling are associated with time scales of vesicle recovery ranging from milliseconds to tens of seconds. There have been suggestions that one of the major models, envisioned as a slow process that occurs only after complete...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1996-05, Vol.93 (11), p.5567-5571 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alternative models to describe the endocytosis phase of synaptic vesicle recycling are associated with time scales of vesicle recovery ranging from milliseconds to tens of seconds. There have been suggestions that one of the major models, envisioned as a slow process that occurs only after complete fusion of the vesicle membrane with the neurolemma, might be applicable only under conditions of heavy, nonphysiological stimulation. Using FM 1-43 and similar fluorescent probes to label recycling synaptic vesicles in rat hippocampal neurons, we have measured the kinetics of endocytosis with a wide range of action-potential-driven exocytotic loads. Our results indicate that when either 5% or 25% of the vesicle pool is used, vesicles are recovered with a half-time on the order of 20 s (24 degrees C). This endocytosis rate was not influenced by operations designed to alter intracellular Ca2+ during membrane retrieval, suggesting that residual Ca2+ after strong stimuli probably does not greatly retard endocytosis. Finally, we have shown that vesicle-destaining kinetics are not strongly influenced by the substantially differing rates at which two marker dyes tested dissociate from membranes. This observation suggests that vesicles remain open long enough for essentially complete dissociation of even the slower dye (a few seconds) or, alternatively, that both dyes readily escape vesicle membrane by lateral diffusion through any exocytotic opening. These data seem most consistent with applicability of the slow-endocytosis, complete-fusion model at low as well as high levels of exocytosis. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.93.11.5567 |