Development of Biologically Active Peptides Based on Antibody Structure

Antibody molecules are composed of several functional domains, including a variable domain that contacts antigen and a constant domain. The hypervariable regions of antibody molecules play an integral role in determining their specificity. However, the delineation of specific residues most critical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1989-07, Vol.86 (14), p.5537-5541
Hauptverfasser: Williams, William V., Moss, David A., Kieber-Emmons, Thomas, Cohen, Jeffrey A., Myers, Jeffrey N., Weiner, David B., Greene, Mark I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antibody molecules are composed of several functional domains, including a variable domain that contacts antigen and a constant domain. The hypervariable regions of antibody molecules play an integral role in determining their specificity. However, the delineation of specific residues most critical in binding is difficult. We have been studying a monoclonal antibody (87.92.6) that binds to the reovirus type 3 receptor on a number of cell types, down-modulates the receptor, and inhibits DNA synthesis in the cells. We have shown that a peptide derived from the second complementarity-determining region of the monoclonal antibody 87.92.6 light-chain variable region can reproduce both of these effects. We were also able to demonstrate specific amino acid residues and structural features involved in producing these effects. The study of antibody structure, coupled with molecular synthetic techniques, can lead to the development of biologically active substances with potential clinical use.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.86.14.5537