RGS3 Mediates a Calcium-Dependent Termination of G Protein Signaling in Sensory Neurons

G proteins modulate synaptic transmission. Regulators of G protein signaling (RGS) proteins accelerate the intrinsic GTPase activity of Gα subunits, and thus terminate G protein activation. Whether RGS proteins themselves are under cellular control is not well defined, particularly in native cells....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-06, Vol.100 (12), p.7337-7342
Hauptverfasser: Tosetti, Patrizia, Pathak, Narendra, Jacob, Michele H., Dunlap, Kathleen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:G proteins modulate synaptic transmission. Regulators of G protein signaling (RGS) proteins accelerate the intrinsic GTPase activity of Gα subunits, and thus terminate G protein activation. Whether RGS proteins themselves are under cellular control is not well defined, particularly in native cells. In dorsal root ganglion neurons over-expressing RGS3, we find that G protein signaling is rapidly terminated (or "desensitized") by calcium influx through voltage-gated channels. This rapid desensitization is most likely mediated by direct binding of calcium to RGS3, as deletion of an EF-hand domain in RGS3 abolishes both the desensitization (observed physiologically) and a calcium-RGS3 interaction (observed in a gel-shift assay). A naturally occurring variant of RGS3 that lacks the EF hand neither binds calcium nor produces rapid desensitization, giving rise instead to a slower calcium-dependent desensitization that is attenuated by a calmodulin antagonist. Thus, activity-evoked calcium entry in sensory neurons may provide differential control of G protein signaling, depending on the isoform of RGS3 expressed in the cells. In complex neural circuits subjected to abundant synaptic inhibition by G proteins (as occurs in dorsal spinal cord), rapid termination of inhibition by electrical activity by EF hand-containing RGS3 may ensure the faithful transmission of information from the most active sensory inputs.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1231837100