Parallel Scheduling of Multiclass M/M/m Queues: Approximate and Heavy-Traffic Optimization of Achievable Performance

We address the problem of scheduling a multiclass M/M/m queue with Bernoulli feedback on m parallel servers to minimize time-average linear holding costs. We analyze the performance of a heuristic priority-index rule, which extends Klimov's optimal solution to the single-server case: servers se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2001-07, Vol.49 (4), p.609-623
Hauptverfasser: Glazebrook, Kevin D, Nino-Mora, Jose
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the problem of scheduling a multiclass M/M/m queue with Bernoulli feedback on m parallel servers to minimize time-average linear holding costs. We analyze the performance of a heuristic priority-index rule, which extends Klimov's optimal solution to the single-server case: servers select preemptively customers with larger Klimov indices. We present closed-form suboptimality bounds ( approximate optimality ) for Klimov's rule, which imply that its suboptimality gap is uniformly bounded above with respect to (i) external arrival rates, as long as they stay within system capacity; and (ii) the number of servers. It follows that its relative suboptimality gap vanishes in a heavy-traffic limit, as external arrival rates approach system capacity ( heavy-traffic optimality ). We obtain simpler expressions for the special no-feedback case, where the heuristic reduces to the classical cµ rule. Our analysis is based on comparing the expected cost of Klimov's rule to the value of a strong linear programming (LP) relaxation of the system's region of achievable performance of mean queue lengths. In order to obtain this relaxation, we derive and exploit a new set of work decomposition laws for the parallel-server system. We further report on the results of a computational study on the quality of the cµ rule for parallel scheduling.
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.49.4.609.11225