Magnetic Nanodots from Atomic Fe: Can It Be Done?

Laser focusing of Fe atoms offers the possibility of creating separate magnetic structures on a scale of 10 nm with exact periodicity. This can be done by using the parabolic minima of the potential generated by a standing light wave as focusing lenses. To achieve the desired 10-nm resolution, we ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-04, Vol.99 (9), p.6509-6513
Hauptverfasser: Sligte, E. te, Bosch, R. C. M., Smeets, B., van der Straten, P., Beijerinck, H. C. W., van Leeuwen, K. A. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laser focusing of Fe atoms offers the possibility of creating separate magnetic structures on a scale of 10 nm with exact periodicity. This can be done by using the parabolic minima of the potential generated by a standing light wave as focusing lenses. To achieve the desired 10-nm resolution, we need to suppress chromatic and spherical aberrations, as well as prevent structure broadening caused by the divergence of the incoming beam. Chromatic aberrations are suppressed by the development of a supersonic Fe beam source with speed ratio S = 11 ± 1. This beam has an intensity of 3 × 1015atoms sr-1s-1. The spherical aberrations of the standing light wave will be suppressed by aperturing with beam masks containing 100-nm slits at 744-nm intervals. The beam divergence can be reduced by application of laser cooling to reduce the transverse velocity. We have constructed a laser system capable of delivering over 500 mW of laser light at 372 nm, the wavelength of the5D 4→5F5atomic transition of56Fe we intend to use for laser cooling. Application of polarization spectroscopy to a hollow cathode discharge results in a locking system holding the laser continuously within 2 MHz of the desired frequency.
ISSN:0027-8424
1091-6490