Interaction between Mid‐Ocean Ridge and Subduction Magmatism in Albanian Ophiolites
Albanian ophiolites are represented by two different coeval belts, each displaying well‐exposed, complete ophiolitic sequences that originated in the same oceanic basin and each showing distinct geochemical characteristics. The eastern belt is characterized by suprasubduction zone (SSZ) ophiolitic s...
Gespeichert in:
Veröffentlicht in: | The Journal of geology 2002-09, Vol.110 (5), p.561-576 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Albanian ophiolites are represented by two different coeval belts, each displaying well‐exposed, complete ophiolitic sequences that originated in the same oceanic basin and each showing distinct geochemical characteristics. The eastern belt is characterized by suprasubduction zone (SSZ) ophiolitic sequences, including island arc tholeiitic and boninitic volcanic series. The western belt, although composed mainly of mid‐ocean ridge‐type (MOR‐type) ophiolites with high‐Ti geochemical affinity, also exhibits alternating sequences showing distinct geochemical affinities referable to MOR‐ and SSZ‐type volcanics. These volcanics can be geochemically subdivided into four groups: (1) group 1 basalts show high field strength element (HFSE) and rare earth element (REE) concentrations similar to those of ocean‐floor basalts; (2) group 2 basalts, basaltic andesites, dacites, and rhyolites, characterized by HFSE and light REE depletion similar to those in many low‐Ti volcanics from SSZ settings; (3) group 3 basalts exhibit geochemical features intermediate between groups 1 and 2 but also bear SSZ features, being characterized by HFSE depletion with respect to the N‐MORBs; (4) group 4 boninitic dikes display very low‐Ti contents and typically depleted,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\textsf{U}$\end{document}
‐shaped REE patterns. These different magmatic groups are interpreted as having originated from fractional crystallization from different primary basalts that were generated, in turn, from partial melting of mantle sources progressively depleted by previous melt extractions. Consequently, group 1 basalts may derive from partial melting of a fertile MORB source, while group 3 basalts may derive from 10% partial melting of a mantle that previously experienced MORB extraction. Finally, the group 2 basalts and group 4 boninites may be derived from about 10% partial melting of a mantle peridotite previously depleted by primary melt extraction of group 1 and group 3 primary melt |
---|---|
ISSN: | 0022-1376 1537-5269 |
DOI: | 10.1086/341758 |