STABILITY AND HOPE BIFURCATION FOR A CELL POPULATION MODEL WITH STATE-DEPENDENT DELAY
We propose a mathematical model describing the dynamics of a hematopoietic stem cell population. The method of characteristics reduces the age-structured model to a system of differential equations with a state-dependent delay. A detailed stability analysis is performed. A sufficient condition for t...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied mathematics 2009-01, Vol.70 (5), p.1611-1633 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1633 |
---|---|
container_issue | 5 |
container_start_page | 1611 |
container_title | SIAM journal on applied mathematics |
container_volume | 70 |
creator | ADIMY, MOSTAFA CRAUSTE, FABIEN HBID, MY LHASSAN QESMI, REDOUANE |
description | We propose a mathematical model describing the dynamics of a hematopoietic stem cell population. The method of characteristics reduces the age-structured model to a system of differential equations with a state-dependent delay. A detailed stability analysis is performed. A sufficient condition for the global asymptotic stability of the trivial steady state is obtained using a Lyapunov-Razumikhin function. A unique positive steady state is shown to appear through a transcritical bifurcation of the trivial steady state. The analysis of the positive steady state behavior, through the study of a first order exponential polynomial characteristic equation, concludes the existence of a Hopf bifurcation and gives criteria for stability switches. A numerical analysis confirms the results and stresses the role of each parameter involved in the system on the stability of the positive steady state. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_29765310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>29765310</jstor_id><sourcerecordid>29765310</sourcerecordid><originalsourceid>FETCH-jstor_primary_297653103</originalsourceid><addsrcrecordid>eNqFi70KwjAYADMoWH8eQfheoJAarWRMm680EJNQU6RT6aBgUZTGxbe3oLvTwR03IRGlLI0TxvmMzEPoKU2SdMsjUh-9yJRWvgFhJJTWIWSqqKtceGUNFLYCATlqDc66Wn_twUrUcFK-hPH3GEt0aCQaD2MQzZJML90tnFc_Lsi6QJ-XcR9ej6F9Dtd7N7zbDd-nO5ZQ9q9_ABkuM0Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>STABILITY AND HOPE BIFURCATION FOR A CELL POPULATION MODEL WITH STATE-DEPENDENT DELAY</title><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><source>JSTOR Mathematics & Statistics</source><creator>ADIMY, MOSTAFA ; CRAUSTE, FABIEN ; HBID, MY LHASSAN ; QESMI, REDOUANE</creator><creatorcontrib>ADIMY, MOSTAFA ; CRAUSTE, FABIEN ; HBID, MY LHASSAN ; QESMI, REDOUANE</creatorcontrib><description>We propose a mathematical model describing the dynamics of a hematopoietic stem cell population. The method of characteristics reduces the age-structured model to a system of differential equations with a state-dependent delay. A detailed stability analysis is performed. A sufficient condition for the global asymptotic stability of the trivial steady state is obtained using a Lyapunov-Razumikhin function. A unique positive steady state is shown to appear through a transcritical bifurcation of the trivial steady state. The analysis of the positive steady state behavior, through the study of a first order exponential polynomial characteristic equation, concludes the existence of a Hopf bifurcation and gives criteria for stability switches. A numerical analysis confirms the results and stresses the role of each parameter involved in the system on the stability of the positive steady state.</description><identifier>ISSN: 0036-1399</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Cell cycle ; Differential equations ; Eigenvalues ; Hematopoietic stem cells ; Mathematical independent variables ; Mathematical models ; Method of characteristics ; Population dynamics ; Stem cells</subject><ispartof>SIAM journal on applied mathematics, 2009-01, Vol.70 (5), p.1611-1633</ispartof><rights>Copyright ©2010 The Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/29765310$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/29765310$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>ADIMY, MOSTAFA</creatorcontrib><creatorcontrib>CRAUSTE, FABIEN</creatorcontrib><creatorcontrib>HBID, MY LHASSAN</creatorcontrib><creatorcontrib>QESMI, REDOUANE</creatorcontrib><title>STABILITY AND HOPE BIFURCATION FOR A CELL POPULATION MODEL WITH STATE-DEPENDENT DELAY</title><title>SIAM journal on applied mathematics</title><description>We propose a mathematical model describing the dynamics of a hematopoietic stem cell population. The method of characteristics reduces the age-structured model to a system of differential equations with a state-dependent delay. A detailed stability analysis is performed. A sufficient condition for the global asymptotic stability of the trivial steady state is obtained using a Lyapunov-Razumikhin function. A unique positive steady state is shown to appear through a transcritical bifurcation of the trivial steady state. The analysis of the positive steady state behavior, through the study of a first order exponential polynomial characteristic equation, concludes the existence of a Hopf bifurcation and gives criteria for stability switches. A numerical analysis confirms the results and stresses the role of each parameter involved in the system on the stability of the positive steady state.</description><subject>Cell cycle</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Hematopoietic stem cells</subject><subject>Mathematical independent variables</subject><subject>Mathematical models</subject><subject>Method of characteristics</subject><subject>Population dynamics</subject><subject>Stem cells</subject><issn>0036-1399</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFi70KwjAYADMoWH8eQfheoJAarWRMm680EJNQU6RT6aBgUZTGxbe3oLvTwR03IRGlLI0TxvmMzEPoKU2SdMsjUh-9yJRWvgFhJJTWIWSqqKtceGUNFLYCATlqDc66Wn_twUrUcFK-hPH3GEt0aCQaD2MQzZJML90tnFc_Lsi6QJ-XcR9ej6F9Dtd7N7zbDd-nO5ZQ9q9_ABkuM0Q</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>ADIMY, MOSTAFA</creator><creator>CRAUSTE, FABIEN</creator><creator>HBID, MY LHASSAN</creator><creator>QESMI, REDOUANE</creator><general>Society for Industrial and Applied Mathematics</general><scope/></search><sort><creationdate>20090101</creationdate><title>STABILITY AND HOPE BIFURCATION FOR A CELL POPULATION MODEL WITH STATE-DEPENDENT DELAY</title><author>ADIMY, MOSTAFA ; CRAUSTE, FABIEN ; HBID, MY LHASSAN ; QESMI, REDOUANE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_297653103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cell cycle</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Hematopoietic stem cells</topic><topic>Mathematical independent variables</topic><topic>Mathematical models</topic><topic>Method of characteristics</topic><topic>Population dynamics</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ADIMY, MOSTAFA</creatorcontrib><creatorcontrib>CRAUSTE, FABIEN</creatorcontrib><creatorcontrib>HBID, MY LHASSAN</creatorcontrib><creatorcontrib>QESMI, REDOUANE</creatorcontrib><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ADIMY, MOSTAFA</au><au>CRAUSTE, FABIEN</au><au>HBID, MY LHASSAN</au><au>QESMI, REDOUANE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STABILITY AND HOPE BIFURCATION FOR A CELL POPULATION MODEL WITH STATE-DEPENDENT DELAY</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>70</volume><issue>5</issue><spage>1611</spage><epage>1633</epage><pages>1611-1633</pages><issn>0036-1399</issn><abstract>We propose a mathematical model describing the dynamics of a hematopoietic stem cell population. The method of characteristics reduces the age-structured model to a system of differential equations with a state-dependent delay. A detailed stability analysis is performed. A sufficient condition for the global asymptotic stability of the trivial steady state is obtained using a Lyapunov-Razumikhin function. A unique positive steady state is shown to appear through a transcritical bifurcation of the trivial steady state. The analysis of the positive steady state behavior, through the study of a first order exponential polynomial characteristic equation, concludes the existence of a Hopf bifurcation and gives criteria for stability switches. A numerical analysis confirms the results and stresses the role of each parameter involved in the system on the stability of the positive steady state.</abstract><pub>Society for Industrial and Applied Mathematics</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 2009-01, Vol.70 (5), p.1611-1633 |
issn | 0036-1399 |
language | eng |
recordid | cdi_jstor_primary_29765310 |
source | Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive; JSTOR Mathematics & Statistics |
subjects | Cell cycle Differential equations Eigenvalues Hematopoietic stem cells Mathematical independent variables Mathematical models Method of characteristics Population dynamics Stem cells |
title | STABILITY AND HOPE BIFURCATION FOR A CELL POPULATION MODEL WITH STATE-DEPENDENT DELAY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STABILITY%20AND%20HOPE%20BIFURCATION%20FOR%20A%20CELL%20POPULATION%20MODEL%20WITH%20STATE-DEPENDENT%20DELAY&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=ADIMY,%20MOSTAFA&rft.date=2009-01-01&rft.volume=70&rft.issue=5&rft.spage=1611&rft.epage=1633&rft.pages=1611-1633&rft.issn=0036-1399&rft_id=info:doi/&rft_dat=%3Cjstor%3E29765310%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=29765310&rfr_iscdi=true |