STABILITY AND HOPE BIFURCATION FOR A CELL POPULATION MODEL WITH STATE-DEPENDENT DELAY

We propose a mathematical model describing the dynamics of a hematopoietic stem cell population. The method of characteristics reduces the age-structured model to a system of differential equations with a state-dependent delay. A detailed stability analysis is performed. A sufficient condition for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 2009-01, Vol.70 (5), p.1611-1633
Hauptverfasser: ADIMY, MOSTAFA, CRAUSTE, FABIEN, HBID, MY LHASSAN, QESMI, REDOUANE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a mathematical model describing the dynamics of a hematopoietic stem cell population. The method of characteristics reduces the age-structured model to a system of differential equations with a state-dependent delay. A detailed stability analysis is performed. A sufficient condition for the global asymptotic stability of the trivial steady state is obtained using a Lyapunov-Razumikhin function. A unique positive steady state is shown to appear through a transcritical bifurcation of the trivial steady state. The analysis of the positive steady state behavior, through the study of a first order exponential polynomial characteristic equation, concludes the existence of a Hopf bifurcation and gives criteria for stability switches. A numerical analysis confirms the results and stresses the role of each parameter involved in the system on the stability of the positive steady state.
ISSN:0036-1399