Hereditary Thrombophilia: Identification of Nonsense and Missense Mutations in the Protein C Gene

The structure of the gene for protein C, an anticoagulant serine protease, was analyzed in 29 unrelated patients with hereditary thrombophilia and protein C deficiency. Gene deletion(s) or gross rearrangement(s) was not demonstrable by Southern blot hybridization to cDNA probes. However, two unrelat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proc. Natl. Acad. Sci. U.S.A.; (United States) 1987-05, Vol.84 (9), p.2829-2832
Hauptverfasser: Romeo, Giovanni, Hassan, H. Jane, Staempfli, Susanne, Roncuzzi, Laura, Cianetti, Luciano, Leonardi, Antonella, Vicente Vicente, Mannucci, Pier Mannuccio, Bertina, Rogier, Peschle, Cesare, Cortese, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure of the gene for protein C, an anticoagulant serine protease, was analyzed in 29 unrelated patients with hereditary thrombophilia and protein C deficiency. Gene deletion(s) or gross rearrangement(s) was not demonstrable by Southern blot hybridization to cDNA probes. However, two unrelated patients showed a variant restriction pattern after Pvu II or BamHI digestion, due to mutations in the last exon: analysis of their pedigrees, including three or seven heterozygotes, respectively, with ≈ 50% reduction of both enzymatic and antigen level, showed the abnormal restriction pattern in all heterozygous individuals, but not in normal relatives. Cloning of protein C gene and sequencing of the last exon allowed us to identify a nonsense and a missense mutation, respectively. In the first case, codon 306 (CGA, arginine) is mutated to an inframe stop codon, thus generating a new Pvu II recognition site. In the second case, a missense mutation in the BamHI palindrome (GGATCC → GCATCC) leads to substitution of a key amino acid (a tryptophan to cysteine substitution at position 402), invariantly conserved in eukaryotic serine proteases. These point mutations may explain the protein C-deficiency phenotype of heterozygotes in the two pedigrees.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.84.9.2829