A General Statistical Framework for Unifying Interval and Linkage Disequilibrium Mapping: Toward High-Resolution Mapping of Quantitative Traits

The nonrandom association between different genes, termed linkage disequilibrium (LD), provides a powerful tool for high-resolution mapping of quantitative trait loci (QTL) underlying complex traits. This LD-based mapping approach can be made more efficient when it is coupled with interval mapping c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2005-03, Vol.100 (469), p.158-171
Hauptverfasser: Lou, Xiang-Yang, Casella, George, Todhunter, Rory J, Yang, Mark C. K, Wu, Rongling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nonrandom association between different genes, termed linkage disequilibrium (LD), provides a powerful tool for high-resolution mapping of quantitative trait loci (QTL) underlying complex traits. This LD-based mapping approach can be made more efficient when it is coupled with interval mapping characterizing the genetic distance between markers and QTL. This article describes a general statistical framework for simultaneously estimating the linkage and LD that are related in a two-stage hierarchical sampling scheme. This framework is constructed within a maximum likelihood context and can be expanded to fine-scale mapping of complex traits for different population structures and reproductive behaviors. We provide a closed-form solution for joint estimation of quantitative genetic parameters describing QTL effects, QTL position and residual variances, and population genetic parameters describing allele frequencies and QTL-marker LD. We perform simulation studies to investigate the statistical properties of our joint analysis model for interval and LD mapping. An example using body weights of dogs from a multifamily outcrossed pedigree illustrates the use of the model.
ISSN:0162-1459
1537-274X
DOI:10.1198/016214504000001295