Giant clam growth in the Gulf of Aqaba is accelerated compared to fossil populations

The health of reef-building corals has declined due to climate change and pollution. However, less is known about whether giant clams, reef-dwelling bivalves with a photosymbiotic partnership similar to that found in reefbuilding corals, are also threatened by environmental degradation. To compare g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2021-08, Vol.288 (1957), p.1-8
Hauptverfasser: Killam, Daniel, Al-Najjar, Tariq, Clapham, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The health of reef-building corals has declined due to climate change and pollution. However, less is known about whether giant clams, reef-dwelling bivalves with a photosymbiotic partnership similar to that found in reefbuilding corals, are also threatened by environmental degradation. To compare giant clam health against a prehistoric baseline, we collected fossil and modern Tridacna shells from the Gulf of Aqaba, Northern Red Sea. After calibrating daily/twice-daily growth lines from the outer shell layer, we determined that modern individuals of all three species (Tridacna maxima, T. squamosa and T. squamosina) grew faster than Holocene and Pleistocene specimens. Modern specimens also show median shell organic δ15N values 4.2‰ lower than fossil specimens, which we propose is most likely due to increased deposition of isotopically light nitrate aerosols in the modern era. Nitrate fertilization accelerates growth in cultured Tridacna, so nitrate aerosol deposition may contribute to faster growth in modern wild populations. Furthermore, colder winter temperatures and past summer monsoons may have depressed fossil giant clam growth. Giant clams can serve as sentinels of reef environmental change, both to determine their individual health and the health of the reefs they inhabit.
ISSN:0962-8452
1471-2954