ON IWAHORI-HECKE ALGEBRAS FOR p-ADIC LOOP GROUPS: DOUBLE COSET BASIS AND BRUHAT ORDER
We study the p-adic loop group Iwahori-Hecke algebra H(G+,I) constructed by Braverman, Kazhdan, and Patnaik and give positive answers to two of their conjectures. First, we algebraically develop the "double coset basis" of H(G+,I) given by indicator functions of double cosets. We prove a g...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2018-02, Vol.140 (1), p.221-244 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the p-adic loop group Iwahori-Hecke algebra H(G+,I) constructed by Braverman, Kazhdan, and Patnaik and give positive answers to two of their conjectures. First, we algebraically develop the "double coset basis" of H(G+,I) given by indicator functions of double cosets. We prove a generalization of the Iwahori-Matsumoto formula, and as a consequence, we prove that the structure coefficients of the double coset basis are polynomials in the order of the residue field. The basis is naturally indexed by a semi-group WT on which Braverman, Kazhdan, and Patnaik define a preorder. Their preorder is a natural generalization of the Bruhat order on affine Weyl groups, and they conjecture that the preorder is a partial order. We define another order on WT which carries a length function and is manifestly a partial order. We prove the two definitions coincide, which implies a positive answer to their conjecture. Interestingly, the length function seems to naturally take values in ZⴲZε where ε is "infinitesimally" small. |
---|---|
ISSN: | 0002-9327 1080-6377 |