Development of Linear Astigmatism Free—Three Mirror System (LAF-TMS)

We present the development of Linear Astigmatism Free—Three Mirror System (LAF-TMS). This is a prototype of an off-axis telescope that enables very wide field of view (FoV) infrared satellites that can observe Paschen-α emission, zodiacal light, integrated starlight, and other infrared sources. It h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Astronomical Society of the Pacific 2020-04, Vol.132 (1010), p.1-11
Hauptverfasser: Park, Woojin, Chang, Seunghyuk, Lim, Jae Hyuk, Lee, Sunwoo, Ahn, Hojae, Kim, Yunjong, Kim, Sanghyuk, Hammar, Arvid, Jeong, Byeongjoon, Kim, Geon Hee, Lee, Hyoungkwon, Kim, Dae Wook, Pak, Soojong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the development of Linear Astigmatism Free—Three Mirror System (LAF-TMS). This is a prototype of an off-axis telescope that enables very wide field of view (FoV) infrared satellites that can observe Paschen-α emission, zodiacal light, integrated starlight, and other infrared sources. It has the entrance pupil diameter of 150 mm, the focal length of 500 mm, and the FoV of 5°.5 × 4°.1. LAF-TMS is an obscuration-free off-axis system with minimal out-of-field baffling and no optical support structure diffraction. This optical design is analytically optimized to remove linear astigmatism and to reduce high-order aberrations. Sensitivity analysis and Monte-Carlo simulation reveal that tilt errors are the most sensitive alignment parameters that allow ∼1′. Optomechanical structure accurately mounts aluminum mirrors, and withstands satellite-level vibration environments. LAF-TMS shows optical performance with 37 μm FWHM of the point source image satisfying Nyquist sampling requirements for typical 18 μm pixel Infrared array detectors. The surface figure errors of mirrors and scattered light from the tertiary mirror with 4.9 nm surface microroughness may affect the measured point-spread function. Optical tests successfully demonstrate constant optical performance over wide FoV, indicating that LAF-TMS suppresses linear astigmatism and high-order aberrations.
ISSN:0004-6280
1538-3873