Synchrony matters more than species richness in plant community stability at a global scale

The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-09, Vol.117 (39), p.24345-24351
Hauptverfasser: Valencia, Enrique, de Bello, Francesco, Galland, Thomas, Adler, Peter B., Lepš, Jan, E-Vojtkó, Anna, van Klink, Roel, Carmona, Carlos P., Danihelka, Jiří, Dengler, Jürgen, Eldridge, David J., Estiarte, Marc, García-González, Ricardo, Garnier, Eric, Gómez-García, Daniel, Harrison, Susan P., Herben, Tomáš, Ibáñez, Ricardo, Jentsch, Anke, Juergens, Norbert, Kertész, Miklós, Klumpp, Katja, Louault, Frédérique, Marrs, Rob H., Ogaya, Romà, Ónodi, Gábor, Pakeman, Robin J., Pardo, Iker, Pärtel, Meelis, Peco, Begoña, Peñuelas, Josep, Pywell, Richard F., Rueda, Marta, Schmidt, Wolfgang, Schmiedel, Ute, Schuetz, Martin, Skálová, Hana, Šmilauer, Petr, Šmilauerová, Marie, Smit, Christian, Song, MingHua, Stock, Martin, Val, James, Vandvik, Vigdis, Ward, David, Wesche, Karsten, Wiser, Susan K., Woodcock, Ben A., Young, Truman P., Yu, Fei-Hai, Zobel, Martin, Götzenberger, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1920405117