ON POINCARÉ-BENDIXSON THEOREM AND NON-TRIVIAL MINIMAL SETS IN PLANAR NONSMOOTH VECTOR FIELDS

In this paper some qualitative and geometric aspects of nonsmooth vector fields theory are discussed. A Poincaré-Bendixson Theorem for a class of nonsmooth systems is presented. In addition, a minimal set in planar Filippov systems not predicted in classical Poincaré-Bendixson theory and whose inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publicacions matemàtiques 2018-01, Vol.62 (2), p.113-131
Hauptverfasser: Buzzi, Claudio A., Carvalho, Tiago, Euzébio, Rodrigo D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper some qualitative and geometric aspects of nonsmooth vector fields theory are discussed. A Poincaré-Bendixson Theorem for a class of nonsmooth systems is presented. In addition, a minimal set in planar Filippov systems not predicted in classical Poincaré-Bendixson theory and whose interior is non-empty is exhibited. The concepts of limit sets, recurrence, and minimal sets for nonsmooth systems are defined and compared with the classical ones. Moreover some differences between them are pointed out.
ISSN:0214-1493
2014-4350