TOWARDS AN ORBIFOLD GENERALIZATION OF ZVONKINE’S r-ELSV FORMULA
We perform a key step towards the proof of Zvonkine’s conjectural r-ELSV formula that relates Hurwitz numbers with completed (r + 1)-cycles to the geometry of the moduli spaces of the r-spin structures on curves: we prove the quasi-polynomiality property prescribed by Zvonkine’s conjecture. Moreover...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2019-09, Vol.372 (6 (1021)), p.4447-4469 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We perform a key step towards the proof of Zvonkine’s conjectural r-ELSV formula that relates Hurwitz numbers with completed (r + 1)-cycles to the geometry of the moduli spaces of the r-spin structures on curves: we prove the quasi-polynomiality property prescribed by Zvonkine’s conjecture. Moreover, we propose an orbifold generalization of Zvonkine’s conjecture and prove the quasi-polynomiality property in this case as well. In addition to that, we study the (0, 1)- and (0, 2)-functions in this generalized case, and we show that these unstable cases are correctly reproduced by the spectral curve initial data. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran7793 |