Minimal n-noids in hyperbolic and anti-de Sitter 3-space
We construct minimal surfaces in hyperbolic and antide Sitter 3-space with the topology of a n-punctured sphere by loop group factorization methods. The end behaviour of the surfaces is based on the asymptotics of Delaunay-type surfaces, i.e. rotational symmetric minimal cylinders. The minimal surfa...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2019-07, Vol.475 (2227), p.1-25 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct minimal surfaces in hyperbolic and antide Sitter 3-space with the topology of a n-punctured sphere by loop group factorization methods. The end behaviour of the surfaces is based on the asymptotics of Delaunay-type surfaces, i.e. rotational symmetric minimal cylinders. The minimal surfaces in H³ extend to Willmore surfaces in the conformal 3-sphere S³ = H³ ∪ S² ∪ H³. |
---|---|
ISSN: | 1364-5021 1471-2946 |