Minimal n-noids in hyperbolic and anti-de Sitter 3-space

We construct minimal surfaces in hyperbolic and antide Sitter 3-space with the topology of a n-punctured sphere by loop group factorization methods. The end behaviour of the surfaces is based on the asymptotics of Delaunay-type surfaces, i.e. rotational symmetric minimal cylinders. The minimal surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2019-07, Vol.475 (2227), p.1-25
Hauptverfasser: Bobenko, Alexander I., Heller, Sebastian, Schmitt, Nicholas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct minimal surfaces in hyperbolic and antide Sitter 3-space with the topology of a n-punctured sphere by loop group factorization methods. The end behaviour of the surfaces is based on the asymptotics of Delaunay-type surfaces, i.e. rotational symmetric minimal cylinders. The minimal surfaces in H³ extend to Willmore surfaces in the conformal 3-sphere S³ = H³ ∪ S² ∪ H³.
ISSN:1364-5021
1471-2946