allometry of patch selection in ruminants

An axiomatic feature of food consumption by animals is that intake rate and prey abundance are positively related. While this has been demonstrated rigorously for large herbivores, it is apparent from patch selection trials that grazers paradoxically tend to prefer short, sparse swards to tall, dens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2000-02, Vol.267 (1441), p.345-349
Hauptverfasser: Wilmshurst, J.F, Fryxell, J.M, Bergman, C.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An axiomatic feature of food consumption by animals is that intake rate and prey abundance are positively related. While this has been demonstrated rigorously for large herbivores, it is apparent from patch selection trials that grazers paradoxically tend to prefer short, sparse swards to tall, dense swards. Indeed, migratory herbivores often shift from areas of high to low sward biomass during the growing season. As nutritional quality is an inverse function of grass abundance, herbivores appear to sacrifice short-term intake for nutritional gains obtainable by eating sparse forage of higher quality. Explicit models of this trade-off suggest that individual ruminants maximize daily rates of energy gain by choosing immature swards of intermediate biomass. As body mass is related positively to both ruminant cropping rates and digestibility, there should be an allometric link between grass abundance and energy maximization, providing a tool for predicting patterns of herbivore habitat selection. We used previously published studies to develop a synthetic model of trade-offs between forage abundance and quality, predicting that optimal sward biomass should scale allometrically with body size. The model predicts size-related variation in habitat selection observed in a guild of grazing ungulates in the Serengeti ecosystem.
ISSN:0962-8452
1471-2954
DOI:10.1098/rspb.2000.1007