A homogenization result for interacting elastic and brittle media

We consider energies modelling the interaction of two media parameterized by the same reference set, such as those used to study interactions of a thin film with a stiff substrate, hybrid laminates or skeletal muscles. Analytically, these energies consist of a (possibly non-convex) functional of hyp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2018-10, Vol.474 (2218), p.1-21
Hauptverfasser: Braides, Andrea, Causin, Andrea, Solci, Margherita
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 2218
container_start_page 1
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 474
creator Braides, Andrea
Causin, Andrea
Solci, Margherita
description We consider energies modelling the interaction of two media parameterized by the same reference set, such as those used to study interactions of a thin film with a stiff substrate, hybrid laminates or skeletal muscles. Analytically, these energies consist of a (possibly non-convex) functional of hyperelastic type and a second functional of the same type such as those used in variational theories of brittle fracture, paired by an interaction term governing the strength of the interaction depending on a small parameter. The overall behaviour is described by letting this parameter tend to zero and exhibiting a limit effective energy using the terminology of Gamma-convergence. Such energy depends on a single state variable and is of hyperelastic type. The form of its energy function highlights an optimization between microfracture and microscopic oscillations of the strain, mixing homogenization and high-contrast effects.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26645676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26645676</jstor_id><sourcerecordid>26645676</sourcerecordid><originalsourceid>FETCH-jstor_primary_266456763</originalsourceid><addsrcrecordid>eNqFyU0KwjAQQOEgCtafIwhzgULapqldFlE8gHuJbVqnpIlMxoWeXhfuXb0P3kwkmaqyNK-Vnn9daJWWMs-WYhXjKKWsy32ViKaBe5jCYD2-DWPwQDY-HUMfCNCzJdMy-gGsM5GxBeM7uBEyOwuT7dBsxKI3Ltrtr2uxOx0vh3M6Rg50fRBOhl7XXGtV6koX__4H1Vk21Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A homogenization result for interacting elastic and brittle media</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Braides, Andrea ; Causin, Andrea ; Solci, Margherita</creator><creatorcontrib>Braides, Andrea ; Causin, Andrea ; Solci, Margherita</creatorcontrib><description>We consider energies modelling the interaction of two media parameterized by the same reference set, such as those used to study interactions of a thin film with a stiff substrate, hybrid laminates or skeletal muscles. Analytically, these energies consist of a (possibly non-convex) functional of hyperelastic type and a second functional of the same type such as those used in variational theories of brittle fracture, paired by an interaction term governing the strength of the interaction depending on a small parameter. The overall behaviour is described by letting this parameter tend to zero and exhibiting a limit effective energy using the terminology of Gamma-convergence. Such energy depends on a single state variable and is of hyperelastic type. The form of its energy function highlights an optimization between microfracture and microscopic oscillations of the strain, mixing homogenization and high-contrast effects.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><language>eng</language><publisher>Royal Society</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2018-10, Vol.474 (2218), p.1-21</ispartof><rights>2018 The Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26645676$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26645676$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Braides, Andrea</creatorcontrib><creatorcontrib>Causin, Andrea</creatorcontrib><creatorcontrib>Solci, Margherita</creatorcontrib><title>A homogenization result for interacting elastic and brittle media</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>We consider energies modelling the interaction of two media parameterized by the same reference set, such as those used to study interactions of a thin film with a stiff substrate, hybrid laminates or skeletal muscles. Analytically, these energies consist of a (possibly non-convex) functional of hyperelastic type and a second functional of the same type such as those used in variational theories of brittle fracture, paired by an interaction term governing the strength of the interaction depending on a small parameter. The overall behaviour is described by letting this parameter tend to zero and exhibiting a limit effective energy using the terminology of Gamma-convergence. Such energy depends on a single state variable and is of hyperelastic type. The form of its energy function highlights an optimization between microfracture and microscopic oscillations of the strain, mixing homogenization and high-contrast effects.</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFyU0KwjAQQOEgCtafIwhzgULapqldFlE8gHuJbVqnpIlMxoWeXhfuXb0P3kwkmaqyNK-Vnn9daJWWMs-WYhXjKKWsy32ViKaBe5jCYD2-DWPwQDY-HUMfCNCzJdMy-gGsM5GxBeM7uBEyOwuT7dBsxKI3Ltrtr2uxOx0vh3M6Rg50fRBOhl7XXGtV6koX__4H1Vk21Q</recordid><startdate>20181031</startdate><enddate>20181031</enddate><creator>Braides, Andrea</creator><creator>Causin, Andrea</creator><creator>Solci, Margherita</creator><general>Royal Society</general><scope/></search><sort><creationdate>20181031</creationdate><title>A homogenization result for interacting elastic and brittle media</title><author>Braides, Andrea ; Causin, Andrea ; Solci, Margherita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_266456763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braides, Andrea</creatorcontrib><creatorcontrib>Causin, Andrea</creatorcontrib><creatorcontrib>Solci, Margherita</creatorcontrib><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braides, Andrea</au><au>Causin, Andrea</au><au>Solci, Margherita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A homogenization result for interacting elastic and brittle media</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2018-10-31</date><risdate>2018</risdate><volume>474</volume><issue>2218</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>We consider energies modelling the interaction of two media parameterized by the same reference set, such as those used to study interactions of a thin film with a stiff substrate, hybrid laminates or skeletal muscles. Analytically, these energies consist of a (possibly non-convex) functional of hyperelastic type and a second functional of the same type such as those used in variational theories of brittle fracture, paired by an interaction term governing the strength of the interaction depending on a small parameter. The overall behaviour is described by letting this parameter tend to zero and exhibiting a limit effective energy using the terminology of Gamma-convergence. Such energy depends on a single state variable and is of hyperelastic type. The form of its energy function highlights an optimization between microfracture and microscopic oscillations of the strain, mixing homogenization and high-contrast effects.</abstract><pub>Royal Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2018-10, Vol.474 (2218), p.1-21
issn 1364-5021
1471-2946
language eng
recordid cdi_jstor_primary_26645676
source Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
title A homogenization result for interacting elastic and brittle media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T09%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20homogenization%20result%20for%20interacting%20elastic%20and%20brittle%20media&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Braides,%20Andrea&rft.date=2018-10-31&rft.volume=474&rft.issue=2218&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/&rft_dat=%3Cjstor%3E26645676%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26645676&rfr_iscdi=true