A homogenization result for interacting elastic and brittle media
We consider energies modelling the interaction of two media parameterized by the same reference set, such as those used to study interactions of a thin film with a stiff substrate, hybrid laminates or skeletal muscles. Analytically, these energies consist of a (possibly non-convex) functional of hyp...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2018-10, Vol.474 (2218), p.1-21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider energies modelling the interaction of two media parameterized by the same reference set, such as those used to study interactions of a thin film with a stiff substrate, hybrid laminates or skeletal muscles. Analytically, these energies consist of a (possibly non-convex) functional of hyperelastic type and a second functional of the same type such as those used in variational theories of brittle fracture, paired by an interaction term governing the strength of the interaction depending on a small parameter. The overall behaviour is described by letting this parameter tend to zero and exhibiting a limit effective energy using the terminology of Gamma-convergence. Such energy depends on a single state variable and is of hyperelastic type. The form of its energy function highlights an optimization between microfracture and microscopic oscillations of the strain, mixing homogenization and high-contrast effects. |
---|---|
ISSN: | 1364-5021 1471-2946 |