The mathematics of asymptotic stability in the Kuramoto model

Now a standard in Nonlinear Sciences, the Kuramoto model is the perfect example of the transition to synchrony in heterogeneous systems of coupled oscillators. While its basic phenomenology has been sketched in early works, the corresponding rigorous validation has long remained problematic and was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2018-12, Vol.474 (2220), p.1-20
Hauptverfasser: Dietert, Helge, Fernandez, Bastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Now a standard in Nonlinear Sciences, the Kuramoto model is the perfect example of the transition to synchrony in heterogeneous systems of coupled oscillators. While its basic phenomenology has been sketched in early works, the corresponding rigorous validation has long remained problematic and was achieved only recently. This paper reviews the mathematical results on asymptotic stability of stationary solutions in the continuum limit of the Kuramoto model, and provides insights into the principal arguments of proofs. This review is complemented with additional original results, various examples, and possible extensions to some variations of the model in the literature.
ISSN:1364-5021
1471-2946