Scaling of sensorimotor delays in terrestrial mammals

Whether an animal is trying to escape from a predator, avoid a fall or perform a more mundane task, the effectiveness of its sensory feedback is constrained by sensorimotor delays. Here, we combine electrophysiological experiments, systematic reviews of the literature and biophysical models to deter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2018-08, Vol.285 (1885), p.1-8
Hauptverfasser: More, Heather L., Donelan, J. Maxwell
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Whether an animal is trying to escape from a predator, avoid a fall or perform a more mundane task, the effectiveness of its sensory feedback is constrained by sensorimotor delays. Here, we combine electrophysiological experiments, systematic reviews of the literature and biophysical models to determine how delays associated with the fastest locomotor reflex scale with size in terrestrial mammals. Nerve conduction delay is one contributor, and increases strongly with animal size. Sensing, synaptic and neuromuscular junction delays also contribute, and we approximate each as a constant value independent of animal size. Muscle’s electromechanical and force generation delays increase more moderately with animal size than nerve conduction delay, but their total contribution exceeds that of the four neural delays. The sum of these six component delays, termed total delay, increases with animal size in proportion to M 0.21—large mammals experience total delays 17 times longer than small mammals. The slower movement times of large animals mostly offset their long delays resulting in a more modest, but perhaps still significant, doubling of their total delay relative to movement duration when compared with their smaller counterparts. Irrespective of size, sensorimotor delay is likely a challenge for all mammals, particularly during fast running.
ISSN:0962-8452
1471-2954