Frequency dependence shapes the adaptive landscape of imperfect Batesian mimicry

Despite more than a century of biological research on the evolution and maintenance of mimetic signals, the relative frequencies of models and mimics necessary to establish and maintain Batesian mimicry in natural populations remain understudied. Here we investigate the frequencydependent dynamics o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2018-04, Vol.285 (1876), p.1-9
Hauptverfasser: Finkbeiner, Susan D., Salazar, Patricio A., Nogales, Sofía, Rush, Cassidi E., Briscoe, Adriana D., Hill, Ryan I., Kronforst, Marcus R., Willmott, Keith R., Mullen, Sean P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite more than a century of biological research on the evolution and maintenance of mimetic signals, the relative frequencies of models and mimics necessary to establish and maintain Batesian mimicry in natural populations remain understudied. Here we investigate the frequencydependent dynamics of imperfect Batesian mimicry, using predation experiments involving artificial butterfly models. We use two geographically distinct populations of Adelpha butterflies that vary in their relative frequencies of a putatively defended model (Adelpha iphiclus) and Batesian mimic (Adelpha serpa). We found that in Costa Rica, where both species share similar abundances, Batesian mimicry breaks down, and predators more readily attack artificial butterfly models of the presumed mimic, A. serpa. By contrast, in Ecuador, where A. iphiclus (model) is significantly more abundant than A. serpa (mimic), both species are equally protected from predation. Our results provide compelling experimental evidence that imperfect Batesian mimicry is frequency-dependent on the relative abundance of models and mimics in natural populations, and contribute to the growing body of evidence that complex dynamics, such as seasonality or the availability of alternative prey, influence the evolution of mimetic traits.
ISSN:0962-8452
1471-2954