Maladaptive Plasticity Masks the Effects of Natural Selection in the Red-Shouldered Soapberry Bug

Natural selection can produce local adaptation, but local adaptation can be masked by maladaptive plasticity. Maladaptive plasticity may arise as a result of gene flow producing novel gene combinations that have not been exposed to selection. In the 1980s, populations of the red-shouldered soapberry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American naturalist 2017-10, Vol.190 (4), p.521-533
1. Verfasser: Cenzer, Meredith L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural selection can produce local adaptation, but local adaptation can be masked by maladaptive plasticity. Maladaptive plasticity may arise as a result of gene flow producing novel gene combinations that have not been exposed to selection. In the 1980s, populations of the red-shouldered soapberry bug (Jadera haematoloma) were locally adapted to feed on the seeds of a native host plant and an introduced host plant; by 2014, local differentiation in beak length had been lost, likely as a consequence of increased gene flow. In this study, I assess the relative contributions of natural selection and plasticity to beak length on these two hosts. I confirm the earlier hypothesis that the host plant seedpod drives divergent natural selection on beak length. I then demonstrate that the proximate cause of the loss of observable differentiation in beak length is maladaptive plasticity, which masks persistent genetic differences between host-associated populations. Maladaptive plasticity is highest in areas where the two plants co-occur; in combination with historical measures of plasticity in hybrids, this indicates that maladaptive plasticity may be a consequence of ongoing gene flow. Although natural selection produced locally adapted genotypes in soapberry bugs, maladaptive plasticity is masking phenotypic differences between populations in nature.
ISSN:0003-0147
1537-5323
DOI:10.1086/693456