Experimental and theoretical evidence for bilayer-bybilayer surface melting of crystalline ice

On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-01, Vol.114 (2), p.227-232
Hauptverfasser: Sánchez, M. Alejandra, Kling, Tanja, Ishiyama, Tatsuya, van Zadel, Marc-Jan, Bisson, Patrick J., Mezger, Markus, Jochum, Mara N., Cyran, Jenée D., Smit, Wilbert J., Bakker, Huib J., Shultz, Mary Jane, Morita, Akihiro, Donadio, Davide, Nagata, Yuki, Bonn, Mischa, Backus, Ellen H. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hydrogen-bonded structure of the outermost water layers occurs at 257 K. The spectral calculations from the molecular dynamics simulations reproduce the experimental findings; this allows us to interpret our experimental findings in terms of a stepwise change from one to two molten bilayers at the transition temperature.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1612893114