Calcium waves occur asDrosophilaoocytes activate

Egg activation is the process by which a mature oocyte becomes capable of supporting embryo development. In vertebrates and echinoderms, activation is induced by fertilization. Molecules introduced into the egg by the sperm trigger progressive release of intracellular calcium stores in the oocyte. C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-01, Vol.112 (3), p.791-796
Hauptverfasser: Kaneuchi, Taro, Sartain, Caroline V., Takeo, Satomi, Horner, Vanessa L., Buehner, Norene A., Aigaki, Toshiro, Wolfner, Mariana F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Egg activation is the process by which a mature oocyte becomes capable of supporting embryo development. In vertebrates and echinoderms, activation is induced by fertilization. Molecules introduced into the egg by the sperm trigger progressive release of intracellular calcium stores in the oocyte. Calcium wave(s) spread through the oocyte and induce completion of meiosis, new macromolecular synthesis, and modification of the vitelline envelope to prevent polyspermy. However, arthropod eggs activate without fertilization: in the insects examined, eggs activate as they move through the female’s reproductive tract. Here, we show that a calcium wave is, nevertheless, characteristic of egg activation in Drosophila. This calcium rise requires influx of calcium from the external environment and is induced as the egg is ovulated. Pressure on the oocyte (or swelling by the oocyte) can induce a calcium rise through the action of mechanosensitive ion channels. Visualization of calcium fluxes in activating eggs in oviducts shows a wave of increased calcium initiating at one or both oocyte poles and spreading across the oocyte. In vitro, waves also spread inward from oocyte pole(s). Wave propagation requires the IP3 system. Thus, although a fertilizing sperm is not necessary for egg activation inDrosophila, the characteristic of increased cytosolic calcium levels spreading through the egg is conserved. Because many downstream signaling effectors are conserved inDrosophila, this system offers the unique perspective of egg activation events due solely to maternal components.
ISSN:0027-8424
1091-6490