On some modules associated with Galois orbits

Given a prime number p we consider ℂ p , which is usually called the Tate field, the topological completion of the algebraic closure of the field of p-adic numbers. We introduce and study a class of modules associated with factor groups of profinite groups, especially of those which are the Galois g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 2018-01, Vol.61(109) (1), p.3-11
Hauptverfasser: Alexandru, Victor, Vâjâitu, Marian, Zaharescu, Alexandru
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a prime number p we consider ℂ p , which is usually called the Tate field, the topological completion of the algebraic closure of the field of p-adic numbers. We introduce and study a class of modules associated with factor groups of profinite groups, especially of those which are the Galois groups of the normal closure of algebraic infinite extensions. In particular, we show that the module associated with a Galois orbit of an arbitrary element of ℂ p is a factor of the Iwasawa algebra of a normal element of ℂ p by an ideal which can be described.
ISSN:1220-3874
2065-0264