On the solvability in H²(Ω) for a class of semilinear elliptic equations with dependence on the gradient

In this paper we study the existence of solutions in H²(Ω) for a class of semilinear elliptic equations with dependence on the gradient of the form - Δ u = f ( x , u , ▽ u ) + g ( x ) ,    x ∈ Ω , u = 0 ,    x ∈ ∂ Ω , where Ω is a bounded domain in ℝ N , N ≥ 3 , g ( x ) ∈ H l o c s ( Ω ) , f ( x , s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 2016-01, Vol.59(107) (3), p.273-284
Hauptverfasser: Chung, Nguyen Thanh, Toan, Hoang Quoc
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the existence of solutions in H²(Ω) for a class of semilinear elliptic equations with dependence on the gradient of the form - Δ u = f ( x , u , ▽ u ) + g ( x ) ,    x ∈ Ω , u = 0 ,    x ∈ ∂ Ω , where Ω is a bounded domain in ℝ N , N ≥ 3 , g ( x ) ∈ H l o c s ( Ω ) , f ( x , s , t ) satisfies the Hölder condition on s and t. The technique is based on the theory on a family of domains smoothly depending on a parameter in S.G. Krein‘s sense and an interative method.
ISSN:1220-3874
2065-0264