On the solvability in H²(Ω) for a class of semilinear elliptic equations with dependence on the gradient
In this paper we study the existence of solutions in H²(Ω) for a class of semilinear elliptic equations with dependence on the gradient of the form - Δ u = f ( x , u , ▽ u ) + g ( x ) , x ∈ Ω , u = 0 , x ∈ ∂ Ω , where Ω is a bounded domain in ℝ N , N ≥ 3 , g ( x ) ∈ H l o c s ( Ω ) , f ( x , s...
Gespeichert in:
Veröffentlicht in: | Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 2016-01, Vol.59(107) (3), p.273-284 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the existence of solutions in H²(Ω) for a class of semilinear elliptic equations with dependence on the gradient of the form
-
Δ
u
=
f
(
x
,
u
,
▽
u
)
+
g
(
x
)
,
x
∈
Ω
,
u
=
0
,
x
∈
∂
Ω
,
where Ω is a bounded domain in
ℝ
N
,
N
≥
3
,
g
(
x
)
∈
H
l
o
c
s
(
Ω
)
,
f
(
x
,
s
,
t
)
satisfies the Hölder condition on s and t. The technique is based on the theory on a family of domains smoothly depending on a parameter in S.G. Krein‘s sense and an interative method. |
---|---|
ISSN: | 1220-3874 2065-0264 |