A note on the combinatorial structure of finite and locally finite simplicial complexes of nonpositive curvature

We investigate the collapsibility of systolic finite simplicial complexes of arbitrary dimension. The main tool we use in the proof is discrete Morse theory. We shall consider a convex subcomplex of the complex and project any simplex of the complex onto a ball around this convex subcomplex. These p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 2016-01, Vol.59(107) (3), p.205-216
Hauptverfasser: Baraliç, Djordje, Lazăr, Ioana-Claudia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue 3
container_start_page 205
container_title Bulletin mathématiques de la Société des sciences mathématiques de Roumanie
container_volume 59(107)
creator Baraliç, Djordje
Lazăr, Ioana-Claudia
description We investigate the collapsibility of systolic finite simplicial complexes of arbitrary dimension. The main tool we use in the proof is discrete Morse theory. We shall consider a convex subcomplex of the complex and project any simplex of the complex onto a ball around this convex subcomplex. These projections will induce a convenient gradient matching on the complex. Besides we analyze the combinatorial structure of both CAT(0) and systolic locally finite simplicial complexes of arbitrary dimensions. We will show that both such complexes possess an arborescent structure. Along the way we make use of certain well known results regarding systolic geometry.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26423355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26423355</jstor_id><sourcerecordid>26423355</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-ad7b7928da8145759f3b65e7b61aa71e395a58bdf7bd00dc842a30ba747c4a33</originalsourceid><addsrcrecordid>eNo1kMtqwzAQRUVpoSbNJxT0AwY9PfYyhL4g0E32YWTLVEaWjCWH5u9r03Y1MHfOgTt3pBCs0iUTlbonBReClbIG9Uj2KQ2MMc5AKICCTAcaYrY0Bpq_LG3jaFzAHGeHnqY8L21e5jXuae-CWw8xdNTHFr2__a-SGyfv2o1Y-cnbb5s2IsQwxeSyu67iZb7ipnoiDz36ZPd_c0fOry_n43t5-nz7OB5O5cABcokdGGhE3WHNlQbd9NJU2oKpOCJwKxuNujZdD6ZjrGtrJVAyg6CgVSjljjz_aoe0lrlMsxtxvl3WfwgptZY_HYZXYw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A note on the combinatorial structure of finite and locally finite simplicial complexes of nonpositive curvature</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><creator>Baraliç, Djordje ; Lazăr, Ioana-Claudia</creator><creatorcontrib>Baraliç, Djordje ; Lazăr, Ioana-Claudia</creatorcontrib><description>We investigate the collapsibility of systolic finite simplicial complexes of arbitrary dimension. The main tool we use in the proof is discrete Morse theory. We shall consider a convex subcomplex of the complex and project any simplex of the complex onto a ball around this convex subcomplex. These projections will induce a convenient gradient matching on the complex. Besides we analyze the combinatorial structure of both CAT(0) and systolic locally finite simplicial complexes of arbitrary dimensions. We will show that both such complexes possess an arborescent structure. Along the way we make use of certain well known results regarding systolic geometry.</description><identifier>ISSN: 1220-3874</identifier><identifier>EISSN: 2065-0264</identifier><language>eng</language><publisher>SOCIETATEA DE ŞTIINŢE MATEMATICE DIN ROMÂNIA</publisher><ispartof>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie, 2016-01, Vol.59(107) (3), p.205-216</ispartof><rights>Copyright © 2016 SSMR</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26423355$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26423355$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,57999,58232</link.rule.ids></links><search><creatorcontrib>Baraliç, Djordje</creatorcontrib><creatorcontrib>Lazăr, Ioana-Claudia</creatorcontrib><title>A note on the combinatorial structure of finite and locally finite simplicial complexes of nonpositive curvature</title><title>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</title><description>We investigate the collapsibility of systolic finite simplicial complexes of arbitrary dimension. The main tool we use in the proof is discrete Morse theory. We shall consider a convex subcomplex of the complex and project any simplex of the complex onto a ball around this convex subcomplex. These projections will induce a convenient gradient matching on the complex. Besides we analyze the combinatorial structure of both CAT(0) and systolic locally finite simplicial complexes of arbitrary dimensions. We will show that both such complexes possess an arborescent structure. Along the way we make use of certain well known results regarding systolic geometry.</description><issn>1220-3874</issn><issn>2065-0264</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo1kMtqwzAQRUVpoSbNJxT0AwY9PfYyhL4g0E32YWTLVEaWjCWH5u9r03Y1MHfOgTt3pBCs0iUTlbonBReClbIG9Uj2KQ2MMc5AKICCTAcaYrY0Bpq_LG3jaFzAHGeHnqY8L21e5jXuae-CWw8xdNTHFr2__a-SGyfv2o1Y-cnbb5s2IsQwxeSyu67iZb7ipnoiDz36ZPd_c0fOry_n43t5-nz7OB5O5cABcokdGGhE3WHNlQbd9NJU2oKpOCJwKxuNujZdD6ZjrGtrJVAyg6CgVSjljjz_aoe0lrlMsxtxvl3WfwgptZY_HYZXYw</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Baraliç, Djordje</creator><creator>Lazăr, Ioana-Claudia</creator><general>SOCIETATEA DE ŞTIINŢE MATEMATICE DIN ROMÂNIA</general><scope/></search><sort><creationdate>20160101</creationdate><title>A note on the combinatorial structure of finite and locally finite simplicial complexes of nonpositive curvature</title><author>Baraliç, Djordje ; Lazăr, Ioana-Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-ad7b7928da8145759f3b65e7b61aa71e395a58bdf7bd00dc842a30ba747c4a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Baraliç, Djordje</creatorcontrib><creatorcontrib>Lazăr, Ioana-Claudia</creatorcontrib><jtitle>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baraliç, Djordje</au><au>Lazăr, Ioana-Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on the combinatorial structure of finite and locally finite simplicial complexes of nonpositive curvature</atitle><jtitle>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>59(107)</volume><issue>3</issue><spage>205</spage><epage>216</epage><pages>205-216</pages><issn>1220-3874</issn><eissn>2065-0264</eissn><abstract>We investigate the collapsibility of systolic finite simplicial complexes of arbitrary dimension. The main tool we use in the proof is discrete Morse theory. We shall consider a convex subcomplex of the complex and project any simplex of the complex onto a ball around this convex subcomplex. These projections will induce a convenient gradient matching on the complex. Besides we analyze the combinatorial structure of both CAT(0) and systolic locally finite simplicial complexes of arbitrary dimensions. We will show that both such complexes possess an arborescent structure. Along the way we make use of certain well known results regarding systolic geometry.</abstract><pub>SOCIETATEA DE ŞTIINŢE MATEMATICE DIN ROMÂNIA</pub><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1220-3874
ispartof Bulletin mathématiques de la Société des sciences mathématiques de Roumanie, 2016-01, Vol.59(107) (3), p.205-216
issn 1220-3874
2065-0264
language eng
recordid cdi_jstor_primary_26423355
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection
title A note on the combinatorial structure of finite and locally finite simplicial complexes of nonpositive curvature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20the%20combinatorial%20structure%20of%20finite%20and%20locally%20finite%20simplicial%20complexes%20of%20nonpositive%20curvature&rft.jtitle=Bulletin%20math%C3%A9matiques%20de%20la%20Soci%C3%A9t%C3%A9%20des%20sciences%20math%C3%A9matiques%20de%20Roumanie&rft.au=Barali%C3%A7,%20Djordje&rft.date=2016-01-01&rft.volume=59(107)&rft.issue=3&rft.spage=205&rft.epage=216&rft.pages=205-216&rft.issn=1220-3874&rft.eissn=2065-0264&rft_id=info:doi/&rft_dat=%3Cjstor%3E26423355%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26423355&rfr_iscdi=true