A note on the combinatorial structure of finite and locally finite simplicial complexes of nonpositive curvature

We investigate the collapsibility of systolic finite simplicial complexes of arbitrary dimension. The main tool we use in the proof is discrete Morse theory. We shall consider a convex subcomplex of the complex and project any simplex of the complex onto a ball around this convex subcomplex. These p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 2016-01, Vol.59(107) (3), p.205-216
Hauptverfasser: Baraliç, Djordje, Lazăr, Ioana-Claudia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the collapsibility of systolic finite simplicial complexes of arbitrary dimension. The main tool we use in the proof is discrete Morse theory. We shall consider a convex subcomplex of the complex and project any simplex of the complex onto a ball around this convex subcomplex. These projections will induce a convenient gradient matching on the complex. Besides we analyze the combinatorial structure of both CAT(0) and systolic locally finite simplicial complexes of arbitrary dimensions. We will show that both such complexes possess an arborescent structure. Along the way we make use of certain well known results regarding systolic geometry.
ISSN:1220-3874
2065-0264