Slant immersions in C5-manifolds

Odd-dimensional non anti-invariant slant submanifolds of an α-Kenmotsu manifold are studied. We relate slant immersions into a Kähler manifold with suitable slant submanifolds of an α-Kenmotsu manifold. More generally, in the framework of Chinea-Gonzalez, we specify the type of the almost contact me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 2017-01, Vol.60(108) (3), p.239-255
Hauptverfasser: de Candia, Salvatore, Falcitelli, Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Odd-dimensional non anti-invariant slant submanifolds of an α-Kenmotsu manifold are studied. We relate slant immersions into a Kähler manifold with suitable slant submanifolds of an α-Kenmotsu manifold. More generally, in the framework of Chinea-Gonzalez, we specify the type of the almost contact metric structure induced on a slant submanifold, then stating a local classification theorem. The case of austere immersions is discussed. This helps in proving a reduction theorem of the codimension. Finally, slant submanifolds which are generalized Sasakian space-forms are described.
ISSN:1220-3874
2065-0264