Single secretory granules of live cells recruit syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in large copy numbers
Before secretory vesicles undergo exocytosis, they must recruit the proteins syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in the plasma membrane. GFP-labeled versions of both proteins cluster at sites where secretory granules have docked. Single-particle tracking shows that minority p...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (48), p.20810-20815 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Before secretory vesicles undergo exocytosis, they must recruit the proteins syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in the plasma membrane. GFP-labeled versions of both proteins cluster at sites where secretory granules have docked. Single-particle tracking shows that minority populations of both molecules are strongly hindered in their mobility, consistent with their confinement in nanodomains. We measured the fluorescence of granule-associated clusters, the fluorescence of single molecules, and the numbers of unlabeled syntaxin-1 and SNAP-25 molecules per cell. There was a more than 10-fold excess of SNAP-25 over syntaxin-1. Fifty to seventy copies each of syntaxin-1 and SNAP-25 molecules were associated with a single docked granule, many more than have been reported to be required for fusion. |
---|---|
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.1014840107 |