Central gating of fly optomotor response
We study the integration of multisensory and central input at the level of an identified fly motoneuron, the ventral cervical nerve motoneuron (VCNM) cell, which controls head movements of the animal. We show that this neuron receives input from a central neuron signaling flight activity, from two i...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (46), p.20104-20109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the integration of multisensory and central input at the level of an identified fly motoneuron, the ventral cervical nerve motoneuron (VCNM) cell, which controls head movements of the animal. We show that this neuron receives input from a central neuron signaling flight activity, from two identified wide-field motion-sensitive neurons, from the wind-sensitive Johnston organ on the antennae, and from the campaniform sensillae of the halteres. We find that visual motion alone leads to only subthreshold responses. Only when it is combined with flight activity or wind stimuli does the VCNM respond to visual motion by modulating its spike activity in a directionally selective way. This nonlinear enhancement of visual responsiveness in the VCNM by central activity is reflected at the behavioral level, when compensatory head movements are measured in response to visual motion. While head movements of flies have only a small amplitude when flies are at rest, the response amplitude is increased by a factor of 30-40 during flight. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1009381107 |