Ras Is an Indispensable Coregulator of the Class${\rm I}_{{\rm B}}$Phosphoinositide 3-Kinase p87/p110γ

Class ${\rm I}_{{\rm B}}$ phosphoinositide 3-kinase γ (PI3Kγ) elicits various immunologic and cardiovascular responses; however, the molecular basis for this signal heterogeneity is unclear. PI3Kγ consists of a catalytic p110γ and a regulatory ${\rm p}87^{{\rm PIKAP}}$ (p87, also p84) or p101 subuni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-12, Vol.106 (48), p.20312-20317
Hauptverfasser: Kurig, Barbara, Shymanets, Aliaksei, Bohnacker, Thomas, Prajwal, Brock, Carsten, Ahmadian, Mohammad Reza, Schaefer, Michael, Gohla, Antje, Harteneck, Christian, Wymann, Matthias P., Jeanclos, Elisabeth, Nürnberg, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Class ${\rm I}_{{\rm B}}$ phosphoinositide 3-kinase γ (PI3Kγ) elicits various immunologic and cardiovascular responses; however, the molecular basis for this signal heterogeneity is unclear. PI3Kγ consists of a catalytic p110γ and a regulatory ${\rm p}87^{{\rm PIKAP}}$ (p87, also p84) or p101 subunit. Hitherto p87 and p101 are generally assumed to exhibit redundant functions in receptor-induced and G protein βγ (Gβγ)-mediated PI3Kγ regulation. Here we investigated the molecular mechanism for receptor-dependent p87/p110γ activation. By analyzing GFP-tagged proteins expressed in HEK293 cells, PI3Kγ-complemented bone marrow-derived mast cells (BMMCs) from ${\rm p}110\gamma ^{\text{-}/\text{-}}$ mice, and purified recombinant proteins reconstituted to lipid vesicles, we elucidated a novel pathway of p87-dependent, G protein-coupled receptor (GPCR)-induced PI3Kγ activation. Although p101 strongly interacted with Gβγ, thereby mediating PI3Kγ membrane recruitment and stimulation, p87 exhibited only a weak interaction, resulting in modest kinase activation and lack of membrane recruitment. Surprisingly, Ras-GTP substituted the missing Gβγ-dependent membrane recruitment of p87/p110γ by direct interaction with p110γ, suggesting the indispensability of Ras for activation of p87/p110γ. Consequently, interference with Ras signaling indeed selectively blocked p87/p110γ, but not p101/p110γ, kinase activity in HEK293 and BMMC cells, revealing an important crosstalk between monomeric and trimeric G proteins for p87/p110γ activation. Our data display distinct signaling requirements of p87 and p101, conferring signaling specificity to PI3Kγ that could open up new possibilities for therapeutic intervention.
ISSN:0027-8424
DOI:10.1073/pnas.0905506106