Blood oxygenation level-dependent contrast response functions identify mechanisms of covert attention in early visual areas

Covert attention can lead to improved performance in perceptual tasks. The neural and functional mechanisms of covert attention are still under investigation. Using both rapid event-related and mixed designs, we measured the blood oxygenation level-dependent functional MRI contrast response function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-04, Vol.105 (16), p.6202-6207
Hauptverfasser: Li, Xiangrui, Lu, Zhong-Lin, Tjan, Bosco S, Dosher, Barbara A, Chu, Wilson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covert attention can lead to improved performance in perceptual tasks. The neural and functional mechanisms of covert attention are still under investigation. Using both rapid event-related and mixed designs, we measured the blood oxygenation level-dependent functional MRI contrast response functions over the full range of contrast (0-100%) in the retinotopically defined early visual areas (V1, V2, V3, V3A, and V4) in humans. Covert attention increased both the baseline activities and contrast gains in the five cortical areas. The effect on baseline can be decomposed into a transient trial-by-trial component and a component across an entire attention block. On average, increase in contrast gain accounted for [almost equal to]88.0%, 28.5%, 12.7%, 35.9%, and 25.2% of the trial-by-trial effects of attention in the five areas, respectively, and 22.2%, 12.8%, 7.4%, 19.7%, and 17.3% of the total effects of attention in those areas, consistent with single-unit findings in V4 and MT. The results provide strong evidence for a stimulus enhancement mechanism of attention as demonstrated in various behavioral studies.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0801390105