SseL, a Salmonella deubiquitinase required for macrophage killing and virulence
Expression of the Salmonella enterica serovar Typhimurium pathogenicity island 2 (SPI-2) type III secretion system is controlled by the two-component regulatory system SsrA-SsrB. We used a transcriptomic approach to help define the SsrA-SsrB regulon. We identified a gene encoding an uncharacterized...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-02, Vol.104 (9), p.3502-3507 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Expression of the Salmonella enterica serovar Typhimurium pathogenicity island 2 (SPI-2) type III secretion system is controlled by the two-component regulatory system SsrA-SsrB. We used a transcriptomic approach to help define the SsrA-SsrB regulon. We identified a gene encoding an uncharacterized effector (SseL) whose translocation into host cells depends on the SPI-2 secretion system. SseL has similarities to cysteine proteases with deubiquitinating activity. A GST-SseL fusion protein specifically hydrolyzed mono- and polyubiquitin substrates in vitro with a preference for K63-linked ubiquitin chains. Ubiquitin-modified proteins accumulated in macrophages infected with Salmonella sseL mutant strains but to a lesser extent when infected with bacteria expressing active protein, demonstrating that SseL functions as a deubiquitinase in vivo. Salmonella sseL mutant strains did not show a replication defect or induce altered levels of cytokine production upon infection of macrophages but were defective for a delayed cytotoxic effect and were attenuated for virulence in mice. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0610095104 |