Molecular Phylogenetics of Anogramma Species and Related Genera (Pteridaceae: Taenitidoideae)

Anogramma is a genus of eight putative species with small annual sporophytes and potentially perennating gametophytes. Phylogenetic relationships within the genus as well as its relationships with other putatively taenitidoid genera and with traditionally cheilanthoid Cosentinia vellea have been poo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systematic botany 2003-07, Vol.28 (3), p.490-502
Hauptverfasser: Nakazato, Takuya, Gastony, Gerald J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anogramma is a genus of eight putative species with small annual sporophytes and potentially perennating gametophytes. Phylogenetic relationships within the genus as well as its relationships with other putatively taenitidoid genera and with traditionally cheilanthoid Cosentinia vellea have been poorly resolved and are investigated here. Maximum parsimony, maximum likelihood, and Bayesian inference analyses of rbcL sequences were used to test 1) the monophyly of Anogramma, 2) support for the proposed specific distinctness of A. guatemalensis and A. caespitosa from A. leptophylla, and 3) the asserted close (sister) relationship between Anogramma and Pityrogramma, as well as to infer the phylogenetic relationships among these genera. Results reveal that Anogramma in the traditional sense is polyphyletic. Anogramma guatemalensis and A. caespitosa nest within A. leptophylla. Pityrogramma is not sister to Anogramma as a whole but only to A. chaerophylla and A. novogaliciana. Anogramma osteniana is deeply separated from its traditional congeners and the new combination Jamesonia osteniana (Dutra) Gastony is made. Cosentinia vellea should not be subsumed within Cheilanthes but instead should be considered a taenitidoid genus closely related to A. leptophylla and A. lorentzii. Neighbor joining analysis of Amplified Fragment Length Polymorphism data sets inferred relationships among the A. leptophylla accessions, embedding A. guatemalensis and A. caespitosa in respective New World and Old World clades of A. leptophylla.
ISSN:0363-6445
1548-2324
DOI:10.1043/02-40.1