A Transformation to Normality for the Skewness Coefficient in Normal Samples
D'Agostino's formula to transform$g_{1}$to normality, in normal samples of size n, is based on Johnson SU transformation. It can be used for n ≥ 8 but does not take into account the fact that the range of$g_{1}$is bounded by$A_{n}=\pm (n-2)/\sqrt{(n-1)}$, so it loses accuracy for extreme p...
Gespeichert in:
Veröffentlicht in: | Sankhyā. Series B 1998-12, Vol.60 (3), p.387-398 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | D'Agostino's formula to transform$g_{1}$to normality, in normal samples of size n, is based on Johnson SU transformation. It can be used for n ≥ 8 but does not take into account the fact that the range of$g_{1}$is bounded by$A_{n}=\pm (n-2)/\sqrt{(n-1)}$, so it loses accuracy for extreme percentage points. In this paper we propose first to transform the range of$g_{1}$to ±∞ by means of a logit function and then to make a Johnson SU transformation to normality. The transformation proposed can be applied for n ≥ 4 and it is slightly more accurate than D'Agostino's formula for n ≥ 8, avoiding the lateral effect of that transformation. A polynomial improvement, tables and approximate formulae to carry out the transformation are given in this paper, as well as some empirical comparative results, between the mentioned transformations. |
---|---|
ISSN: | 0581-5738 |