On the Robustness of the LRT with Respect to Specification Errors in a Linear Model
We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},...
Gespeichert in:
Veröffentlicht in: | Sankhya. Series A 1983-06, Vol.45 (2), p.212-225 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | 2 |
container_start_page | 212 |
container_title | Sankhya. Series A |
container_volume | 45 |
creator | Mathew, Thomas Bhimasankaram, P. |
description | We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$in the dispersion of the observations or expectation or both and obtain necessary and sufficient conditions for the F-test under$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}}$for testing$H_{0}$: Aβ = 0 to be valid under the alternative model also. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25050432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25050432</jstor_id><sourcerecordid>25050432</sourcerecordid><originalsourceid>FETCH-jstor_primary_250504323</originalsourceid><addsrcrecordid>eNqFicsKwjAQAHNQsD4-QdgfKKSP0N6l4qEitB68lVhTmlKzZTci_r0i3j3NMDMTgVR5FKosvizEknmQUmVRngaiPjnwvYEKrw_2zjADdt9SVmd4Wt9DZXgyrQePUH_EdrbV3qKDggiJwTrQUFpnNMERb2Zci3mnRzabH1diuy_Ou0M4sEdqJrJ3Ta8mVlLJNImTf_8NRDU6Cg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Robustness of the LRT with Respect to Specification Errors in a Linear Model</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Mathew, Thomas ; Bhimasankaram, P.</creator><creatorcontrib>Mathew, Thomas ; Bhimasankaram, P.</creatorcontrib><description>We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$in the dispersion of the observations or expectation or both and obtain necessary and sufficient conditions for the F-test under$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}}$for testing$H_{0}$: Aβ = 0 to be valid under the alternative model also.</description><identifier>ISSN: 0581-572X</identifier><language>eng</language><publisher>Statistical Publishing Society</publisher><subject>Covariance matrices ; Eigenvalues ; Eigenvectors ; Linear models ; Mathematical theorems ; Mathematical vectors ; Matrices ; Statistical theories ; Statistics ; Sufficient conditions</subject><ispartof>Sankhya. Series A, 1983-06, Vol.45 (2), p.212-225</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25050432$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25050432$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Mathew, Thomas</creatorcontrib><creatorcontrib>Bhimasankaram, P.</creatorcontrib><title>On the Robustness of the LRT with Respect to Specification Errors in a Linear Model</title><title>Sankhya. Series A</title><description>We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$in the dispersion of the observations or expectation or both and obtain necessary and sufficient conditions for the F-test under$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}}$for testing$H_{0}$: Aβ = 0 to be valid under the alternative model also.</description><subject>Covariance matrices</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Linear models</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Statistical theories</subject><subject>Statistics</subject><subject>Sufficient conditions</subject><issn>0581-572X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFicsKwjAQAHNQsD4-QdgfKKSP0N6l4qEitB68lVhTmlKzZTci_r0i3j3NMDMTgVR5FKosvizEknmQUmVRngaiPjnwvYEKrw_2zjADdt9SVmd4Wt9DZXgyrQePUH_EdrbV3qKDggiJwTrQUFpnNMERb2Zci3mnRzabH1diuy_Ou0M4sEdqJrJ3Ta8mVlLJNImTf_8NRDU6Cg</recordid><startdate>19830601</startdate><enddate>19830601</enddate><creator>Mathew, Thomas</creator><creator>Bhimasankaram, P.</creator><general>Statistical Publishing Society</general><scope/></search><sort><creationdate>19830601</creationdate><title>On the Robustness of the LRT with Respect to Specification Errors in a Linear Model</title><author>Mathew, Thomas ; Bhimasankaram, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_250504323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Covariance matrices</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Linear models</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Statistical theories</topic><topic>Statistics</topic><topic>Sufficient conditions</topic><toplevel>online_resources</toplevel><creatorcontrib>Mathew, Thomas</creatorcontrib><creatorcontrib>Bhimasankaram, P.</creatorcontrib><jtitle>Sankhya. Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathew, Thomas</au><au>Bhimasankaram, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Robustness of the LRT with Respect to Specification Errors in a Linear Model</atitle><jtitle>Sankhya. Series A</jtitle><date>1983-06-01</date><risdate>1983</risdate><volume>45</volume><issue>2</issue><spage>212</spage><epage>225</epage><pages>212-225</pages><issn>0581-572X</issn><abstract>We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$in the dispersion of the observations or expectation or both and obtain necessary and sufficient conditions for the F-test under$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}}$for testing$H_{0}$: Aβ = 0 to be valid under the alternative model also.</abstract><pub>Statistical Publishing Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0581-572X |
ispartof | Sankhya. Series A, 1983-06, Vol.45 (2), p.212-225 |
issn | 0581-572X |
language | eng |
recordid | cdi_jstor_primary_25050432 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Covariance matrices Eigenvalues Eigenvectors Linear models Mathematical theorems Mathematical vectors Matrices Statistical theories Statistics Sufficient conditions |
title | On the Robustness of the LRT with Respect to Specification Errors in a Linear Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Robustness%20of%20the%20LRT%20with%20Respect%20to%20Specification%20Errors%20in%20a%20Linear%20Model&rft.jtitle=Sankhya.%20Series%20A&rft.au=Mathew,%20Thomas&rft.date=1983-06-01&rft.volume=45&rft.issue=2&rft.spage=212&rft.epage=225&rft.pages=212-225&rft.issn=0581-572X&rft_id=info:doi/&rft_dat=%3Cjstor%3E25050432%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25050432&rfr_iscdi=true |