On the Robustness of the LRT with Respect to Specification Errors in a Linear Model

We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sankhya. Series A 1983-06, Vol.45 (2), p.212-225
Hauptverfasser: Mathew, Thomas, Bhimasankaram, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 2
container_start_page 212
container_title Sankhya. Series A
container_volume 45
creator Mathew, Thomas
Bhimasankaram, P.
description We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$in the dispersion of the observations or expectation or both and obtain necessary and sufficient conditions for the F-test under$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}}$for testing$H_{0}$: Aβ = 0 to be valid under the alternative model also.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25050432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25050432</jstor_id><sourcerecordid>25050432</sourcerecordid><originalsourceid>FETCH-jstor_primary_250504323</originalsourceid><addsrcrecordid>eNqFicsKwjAQAHNQsD4-QdgfKKSP0N6l4qEitB68lVhTmlKzZTci_r0i3j3NMDMTgVR5FKosvizEknmQUmVRngaiPjnwvYEKrw_2zjADdt9SVmd4Wt9DZXgyrQePUH_EdrbV3qKDggiJwTrQUFpnNMERb2Zci3mnRzabH1diuy_Ou0M4sEdqJrJ3Ta8mVlLJNImTf_8NRDU6Cg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Robustness of the LRT with Respect to Specification Errors in a Linear Model</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Mathew, Thomas ; Bhimasankaram, P.</creator><creatorcontrib>Mathew, Thomas ; Bhimasankaram, P.</creatorcontrib><description>We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$in the dispersion of the observations or expectation or both and obtain necessary and sufficient conditions for the F-test under$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}}$for testing$H_{0}$: Aβ = 0 to be valid under the alternative model also.</description><identifier>ISSN: 0581-572X</identifier><language>eng</language><publisher>Statistical Publishing Society</publisher><subject>Covariance matrices ; Eigenvalues ; Eigenvectors ; Linear models ; Mathematical theorems ; Mathematical vectors ; Matrices ; Statistical theories ; Statistics ; Sufficient conditions</subject><ispartof>Sankhya. Series A, 1983-06, Vol.45 (2), p.212-225</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25050432$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25050432$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Mathew, Thomas</creatorcontrib><creatorcontrib>Bhimasankaram, P.</creatorcontrib><title>On the Robustness of the LRT with Respect to Specification Errors in a Linear Model</title><title>Sankhya. Series A</title><description>We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$in the dispersion of the observations or expectation or both and obtain necessary and sufficient conditions for the F-test under$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}}$for testing$H_{0}$: Aβ = 0 to be valid under the alternative model also.</description><subject>Covariance matrices</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Linear models</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Statistical theories</subject><subject>Statistics</subject><subject>Sufficient conditions</subject><issn>0581-572X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFicsKwjAQAHNQsD4-QdgfKKSP0N6l4qEitB68lVhTmlKzZTci_r0i3j3NMDMTgVR5FKosvizEknmQUmVRngaiPjnwvYEKrw_2zjADdt9SVmd4Wt9DZXgyrQePUH_EdrbV3qKDggiJwTrQUFpnNMERb2Zci3mnRzabH1diuy_Ou0M4sEdqJrJ3Ta8mVlLJNImTf_8NRDU6Cg</recordid><startdate>19830601</startdate><enddate>19830601</enddate><creator>Mathew, Thomas</creator><creator>Bhimasankaram, P.</creator><general>Statistical Publishing Society</general><scope/></search><sort><creationdate>19830601</creationdate><title>On the Robustness of the LRT with Respect to Specification Errors in a Linear Model</title><author>Mathew, Thomas ; Bhimasankaram, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_250504323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Covariance matrices</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Linear models</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Statistical theories</topic><topic>Statistics</topic><topic>Sufficient conditions</topic><toplevel>online_resources</toplevel><creatorcontrib>Mathew, Thomas</creatorcontrib><creatorcontrib>Bhimasankaram, P.</creatorcontrib><jtitle>Sankhya. Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathew, Thomas</au><au>Bhimasankaram, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Robustness of the LRT with Respect to Specification Errors in a Linear Model</atitle><jtitle>Sankhya. Series A</jtitle><date>1983-06-01</date><risdate>1983</risdate><volume>45</volume><issue>2</issue><spage>212</spage><epage>225</epage><pages>212-225</pages><issn>0581-572X</issn><abstract>We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$in the dispersion of the observations or expectation or both and obtain necessary and sufficient conditions for the F-test under$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}}$for testing$H_{0}$: Aβ = 0 to be valid under the alternative model also.</abstract><pub>Statistical Publishing Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0581-572X
ispartof Sankhya. Series A, 1983-06, Vol.45 (2), p.212-225
issn 0581-572X
language eng
recordid cdi_jstor_primary_25050432
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Covariance matrices
Eigenvalues
Eigenvectors
Linear models
Mathematical theorems
Mathematical vectors
Matrices
Statistical theories
Statistics
Sufficient conditions
title On the Robustness of the LRT with Respect to Specification Errors in a Linear Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Robustness%20of%20the%20LRT%20with%20Respect%20to%20Specification%20Errors%20in%20a%20Linear%20Model&rft.jtitle=Sankhya.%20Series%20A&rft.au=Mathew,%20Thomas&rft.date=1983-06-01&rft.volume=45&rft.issue=2&rft.spage=212&rft.epage=225&rft.pages=212-225&rft.issn=0581-572X&rft_id=info:doi/&rft_dat=%3Cjstor%3E25050432%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25050432&rfr_iscdi=true