On the Robustness of the LRT with Respect to Specification Errors in a Linear Model
We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},...
Gespeichert in:
Veröffentlicht in: | Sankhya. Series A 1983-06, Vol.45 (2), p.212-225 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the linear model$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$and a set of estimable parametric functionals Aβ. In this paper, we consider alternative linear models which differ from$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}})$in the dispersion of the observations or expectation or both and obtain necessary and sufficient conditions for the F-test under$(\mathbf{\mathit{Y}},\mathbf{\mathit{X}}\boldsymbol{\beta},\sigma ^{2}\mathbf{\mathit{I}}$for testing$H_{0}$: Aβ = 0 to be valid under the alternative model also. |
---|---|
ISSN: | 0581-572X |