The Limiting Distribution of the Likelihood Ratio Statistic under a Class of Local Alternatives

This paper gives a proof that$-2\,{\rm ln}\lambda _{n}$, the likelihood ratio statistic based on a sample of size n, converges in distribution to a noncentral chi-square distribution under local alternatives to the null hypothesis for a multi-dimensional parameter space. A proof of uniform convergen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sankhya. Series A 1970-06, Vol.32 (2), p.209-224
Hauptverfasser: Davidson, Roger R., Lever, William E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper gives a proof that$-2\,{\rm ln}\lambda _{n}$, the likelihood ratio statistic based on a sample of size n, converges in distribution to a noncentral chi-square distribution under local alternatives to the null hypothesis for a multi-dimensional parameter space. A proof of uniform convergence for this situation has been given by Wald (1943) whose assumptions include the uniform consistency of the maximum likelihood estimates and of the likelihood ratio test. The assumptions utilized in this paper can be more directly verified in applications than those required by Wald.
ISSN:0581-572X