Norms of Inner Derivations of Limit Algebras

Let A be a strongly maximal TAF-algebra. It is shown that $\frac{1}{2} \text{Orc} (A) \leq K (A) \leq \frac{4}{\sqrt{3}} \text{Orc}(A)$, where K(A) and Orc(A) are constants determined by the norms of inner derivations of A, and by the hull-kernel topology on the space of meet-irreducible ideals of A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2001-12, Vol.50 (4), p.1693-1704
Hauptverfasser: HUDSON, TIMOTHY D., SOMERSET, D.W.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be a strongly maximal TAF-algebra. It is shown that $\frac{1}{2} \text{Orc} (A) \leq K (A) \leq \frac{4}{\sqrt{3}} \text{Orc}(A)$, where K(A) and Orc(A) are constants determined by the norms of inner derivations of A, and by the hull-kernel topology on the space of meet-irreducible ideals of A, respectively. It follows that the set of inner derivations of A is closed in the Banach space of all bounded derivations of A if and only if Orc(A) < ∞. These results are analogous to those for C*-algebras.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2001.50.1885