Norms of Inner Derivations of Limit Algebras
Let A be a strongly maximal TAF-algebra. It is shown that $\frac{1}{2} \text{Orc} (A) \leq K (A) \leq \frac{4}{\sqrt{3}} \text{Orc}(A)$, where K(A) and Orc(A) are constants determined by the norms of inner derivations of A, and by the hull-kernel topology on the space of meet-irreducible ideals of A...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2001-12, Vol.50 (4), p.1693-1704 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A be a strongly maximal TAF-algebra. It is shown that $\frac{1}{2} \text{Orc} (A) \leq K (A) \leq \frac{4}{\sqrt{3}} \text{Orc}(A)$, where K(A) and Orc(A) are constants determined by the norms of inner derivations of A, and by the hull-kernel topology on the space of meet-irreducible ideals of A, respectively. It follows that the set of inner derivations of A is closed in the Banach space of all bounded derivations of A if and only if Orc(A) < ∞. These results are analogous to those for C*-algebras. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2001.50.1885 |