Projected Composition Operators On the Hardy Space
Let P be the projection from L2, the Lebesgue space of the circle, Γ, to H2, the Hardy space. Given a complex valued function φ on Γ, define the operator Kφ : H2 → H2 by Kφ(f) = P(f ο φ). If φ is the boundary value function of a holomorphic function, then the projection is unnecessary and we have a...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 1994-07, Vol.43 (2), p.441-458 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let P be the projection from L2, the Lebesgue space of the circle, Γ, to H2, the Hardy space. Given a complex valued function φ on Γ, define the operator Kφ : H2 → H2 by Kφ(f) = P(f ο φ). If φ is the boundary value function of a holomorphic function, then the projection is unnecessary and we have a classical composition operator. In that case the conditions under which Kφ is bounded are known. In this paper we give some results on the boundedness of Kφ for general φ. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.1994.43.43018 |