Projected Composition Operators On the Hardy Space

Let P be the projection from L2, the Lebesgue space of the circle, Γ, to H2, the Hardy space. Given a complex valued function φ on Γ, define the operator Kφ : H2 → H2 by Kφ(f) = P(f ο φ). If φ is the boundary value function of a holomorphic function, then the projection is unnecessary and we have a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 1994-07, Vol.43 (2), p.441-458
1. Verfasser: Rochberg, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let P be the projection from L2, the Lebesgue space of the circle, Γ, to H2, the Hardy space. Given a complex valued function φ on Γ, define the operator Kφ : H2 → H2 by Kφ(f) = P(f ο φ). If φ is the boundary value function of a holomorphic function, then the projection is unnecessary and we have a classical composition operator. In that case the conditions under which Kφ is bounded are known. In this paper we give some results on the boundedness of Kφ for general φ.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.1994.43.43018