On strongly conjugable extensions of hypergroups of type U with scalar identity
Let Sndenote the class of hypergroups of type U on the right of size n with bilateral scalar identity. In this paper we consider the hypergroups (H, o) ∈ S7 which own a proper and non-trivial subhypergroup h. For these hypergroups we prove that h is closed if and only if (H − h) o (H − h) = h. Moreo...
Gespeichert in:
Veröffentlicht in: | Filomat 2013-01, Vol.27 (6), p.977-994 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Sndenote the class of hypergroups of type U on the right of size n with bilateral scalar identity. In this paper we consider the hypergroups (H, o) ∈ S7 which own a proper and non-trivial subhypergroup h. For these hypergroups we prove that h is closed if and only if (H − h) o (H − h) = h. Moreover we consider the set S7 of hypergroups in S7 that own the above property. On this set, we introduce a partial ordering induced by the inclusion of hyperproducts. This partial ordering allows us to give a complete characterization of hypergroups in S7 on the basis of a small set of minimal hypergroups, up to isomorphisms. This analysis gives a partial (negative) answer to a problem raised in [5] concerning the existence in Snof proper hypergroups having singletons as special hyperproducts. |
---|---|
ISSN: | 0354-5180 2406-0933 |