On strongly conjugable extensions of hypergroups of type U with scalar identity

Let Sndenote the class of hypergroups of type U on the right of size n with bilateral scalar identity. In this paper we consider the hypergroups (H, o) ∈ S7 which own a proper and non-trivial subhypergroup h. For these hypergroups we prove that h is closed if and only if (H − h) o (H − h) = h. Moreo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2013-01, Vol.27 (6), p.977-994
Hauptverfasser: De Salvo, Mario, Fasino, Dario, Freni, Domenico, Faro, Giovanni Lo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Sndenote the class of hypergroups of type U on the right of size n with bilateral scalar identity. In this paper we consider the hypergroups (H, o) ∈ S7 which own a proper and non-trivial subhypergroup h. For these hypergroups we prove that h is closed if and only if (H − h) o (H − h) = h. Moreover we consider the set S7 of hypergroups in S7 that own the above property. On this set, we introduce a partial ordering induced by the inclusion of hyperproducts. This partial ordering allows us to give a complete characterization of hypergroups in S7 on the basis of a small set of minimal hypergroups, up to isomorphisms. This analysis gives a partial (negative) answer to a problem raised in [5] concerning the existence in Snof proper hypergroups having singletons as special hyperproducts.
ISSN:0354-5180
2406-0933