DYNAMICS OF PROPERTIES OF TOEPLITZ OPERATORS ON THE UPPER HALF-PLANE: PARABOLIC CASE
We consider Toeplitz operators ${\mathrm{T}}_{\mathrm{a}}^{\left(\mathrm{\lambda }\right)}$ acting on the weighted Bergman spaces ${\mathrm{A}}_{\mathrm{\lambda }}^{2}\left(\mathrm{\Pi }\right)$, λ ∈ [0, ∞), over the upper half-plane Π, whose symbols depend on y = Im z. Motivated by the Berezin quan...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2004-06, Vol.52 (1), p.185-214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider Toeplitz operators ${\mathrm{T}}_{\mathrm{a}}^{\left(\mathrm{\lambda }\right)}$ acting on the weighted Bergman spaces ${\mathrm{A}}_{\mathrm{\lambda }}^{2}\left(\mathrm{\Pi }\right)$, λ ∈ [0, ∞), over the upper half-plane Π, whose symbols depend on y = Im z. Motivated by the Berezin quantization procedure we study the dependence of the properties of such operators on the weight λ and, in particular, under the limit procedure λ → ∞. |
---|---|
ISSN: | 0379-4024 1841-7744 |