WEIGHTED COMPOSITION OPERATORS ON SPACES OF FUNCTIONS WITH DERIVATIVE IN A HARDY SPACE

Let φ and ψ be two analytic functions defined on D such that φ(D) ⊆ D. The operator given by f ↦ ψ(f ○ φ) is called a weighted composition operator. For each 1 ≤ p ≤ ∞, let Sp be the space of analytic functions on D whose derivatives belong to the Hardy space Hp. In this paper we deal with boundedne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 2004-06, Vol.52 (1), p.173-184
Hauptverfasser: CONTRERAS, M.D., HERNÁNDEZ-DÍAZ, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let φ and ψ be two analytic functions defined on D such that φ(D) ⊆ D. The operator given by f ↦ ψ(f ○ φ) is called a weighted composition operator. For each 1 ≤ p ≤ ∞, let Sp be the space of analytic functions on D whose derivatives belong to the Hardy space Hp. In this paper we deal with boundedness, compactness, weak compactness, and complete continuity of weighted composition operators from Sp into Sq for 1 ≤ p, q ≤ ∞.
ISSN:0379-4024
1841-7744